distilhubert-gtzan

This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5201
  • Accuracy: 0.87

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 12

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.08 0.99 56 1.9899 0.34
1.5207 2.0 113 1.4384 0.63
1.141 2.99 169 1.0620 0.76
0.9619 4.0 226 0.9648 0.74
0.6937 4.99 282 0.8175 0.76
0.4903 6.0 339 0.7837 0.76
0.5162 6.99 395 0.6165 0.82
0.4026 8.0 452 0.5812 0.86
0.2924 8.99 508 0.5499 0.85
0.2344 10.0 565 0.5076 0.86
0.147 10.99 621 0.5171 0.86
0.1643 11.89 672 0.5201 0.87

Framework versions

  • Transformers 4.33.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
159
Safetensors
Model size
23.7M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for Stopwolf/distilhubert-gtzan

Finetuned
(428)
this model

Dataset used to train Stopwolf/distilhubert-gtzan

Evaluation results