SteveR commited on
Commit
26ea914
1 Parent(s): 3f929e6

Upload PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -10,7 +10,7 @@ model-index:
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
- value: 263.55 +/- 24.36
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
 
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
+ value: 273.94 +/- 11.64
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fddcbba3050>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fddcbba30e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fddcbba3170>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fddcbba3200>", "_build": "<function ActorCriticPolicy._build at 0x7fddcbba3290>", "forward": "<function ActorCriticPolicy.forward at 0x7fddcbba3320>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fddcbba33b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fddcbba3440>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fddcbba34d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fddcbba3560>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fddcbba35f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fddcbbf72a0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651783505.1116066, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAbkM75HjlU/jTk0u+m4QL54IEq97ysRPAAAAAAAAAAAzWCEu8Qisj+NEP69lVCVvnuhlzu5sAY8AAAAAAAAAABmZR094WrhOQx2KbltRVa1o+iHO1WPTzgAAIA/AACAP61YDT6kfJM+tm/JvAXkkb4UmvS89drMPQAAAAAAAAAAze7JvXvqoLoayX85HA1wNFGclLoeUZO4AACAPwAAgD9mTlm7XPsHuuw+RzpVnDo15S6IOrK5brkAAIA/AACAPxNgRr5CdpA/7ssTvqprpL685DK+ZBmQPQAAAAAAAAAAzVq2Pg2obj8hXYc+vAt5vgeRjT76xRc8AAAAAAAAAACmwKA9cW0AuS7587riroi2SzpJOxTVEToAAIA/AACAP5pH0jx7ToK6f7qguotXlbVpwsE6/JW7OQAAgD8AAIA/s+6yPSmkb7q9NmS6Oa+JNVa2hzurNo05AACAPwAAgD9mvk47j1p/ulDP5zqEkuI1l8gMu6ivBroAAIA/AACAP/N/aj5xcC88/erZNf6c8TPwcMY9EWkZtQAAgD8AAIA/hiV+Pk8mKD9dui6+oq1hvpYMIr3+Gpq8AAAAAAAAAAD6wRy+AfwEPiyfij3Fr16+whQDvQMQYb0AAAAAAAAAALN7hb2uiai6VoKTOj7pijUIkKM6eGGpuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMImDEFa5xoZECUhpRSlIwBbJRN6AOMAXSUR0Cd+s7ZFocrdX2UKGgGaAloD0MIQ3HHm3zgYECUhpRSlGgVTegDaBZHQJ3/yL876pJ1fZQoaAZoCWgPQwj5adyb321hQJSGlFKUaBVN6ANoFkdAngCb4vexfXV9lChoBmgJaA9DCA1VMZV+v2VAlIaUUpRoFU3oA2gWR0CeAk1DBuXNdX2UKGgGaAloD0MIH7x2acOtXUCUhpRSlGgVTegDaBZHQJ4CeSzPa+N1fZQoaAZoCWgPQwiDv1/MlgpmQJSGlFKUaBVN6ANoFkdAngPq/RE4N3V9lChoBmgJaA9DCM2VQbXBHWRAlIaUUpRoFU3oA2gWR0CeBw4rjHXFdX2UKGgGaAloD0MIXmkZqfdVXkCUhpRSlGgVTegDaBZHQJ4OrM4cWCV1fZQoaAZoCWgPQwi7fyxEh7ZdQJSGlFKUaBVN6ANoFkdAnheK1PWQOnV9lChoBmgJaA9DCMy0/SsrbFxAlIaUUpRoFU3oA2gWR0CeMJjgydnTdX2UKGgGaAloD0MIb4Jvmj5Db0CUhpRSlGgVTdEDaBZHQJ4zkQvpQk51fZQoaAZoCWgPQwg5ud+hqJBhQJSGlFKUaBVN6ANoFkdAnje1G9YfXHV9lChoBmgJaA9DCOavkLkyV2BAlIaUUpRoFU3oA2gWR0CeOTpudf9hdX2UKGgGaAloD0MIsfm4NlSoOkCUhpRSlGgVTSMBaBZHQJ49dzRx95R1fZQoaAZoCWgPQwglzLT9K5ptQJSGlFKUaBVNbwJoFkdAnkJnYcvM83V9lChoBmgJaA9DCI3SpX/JB2dAlIaUUpRoFU3oA2gWR0CeQnWw/xDtdX2UKGgGaAloD0MINGWnH9TGY0CUhpRSlGgVTegDaBZHQJ5I+5RTCLx1fZQoaAZoCWgPQwg3NdB8zjdbQJSGlFKUaBVN6ANoFkdAnksqaG5+Y3V9lChoBmgJaA9DCPVKWYY4LlpAlIaUUpRoFU3oA2gWR0CeTJr1uivgdX2UKGgGaAloD0MIar+1EyW2Y0CUhpRSlGgVTegDaBZHQJ5RT5M10kp1fZQoaAZoCWgPQwjJkGPrGaFeQJSGlFKUaBVN6ANoFkdAnlIpha1Ti3V9lChoBmgJaA9DCOse2Vw1Q2NAlIaUUpRoFU3oA2gWR0CeU8AVwgkkdX2UKGgGaAloD0MIQx1WuOWCZUCUhpRSlGgVTegDaBZHQJ5T7wI+nqF1fZQoaAZoCWgPQwjYDHBBNhJjQJSGlFKUaBVN6ANoFkdAnlV4+OfdynV9lChoBmgJaA9DCF5MM93rykNAlIaUUpRoFU1CAWgWR0CeX9Dl5nlGdX2UKGgGaAloD0MI9fOmIhXgXUCUhpRSlGgVTegDaBZHQJ5gjIgeRxN1fZQoaAZoCWgPQwjiBnx+2CpxQJSGlFKUaBVNYQFoFkdAnml6FqSHM3V9lChoBmgJaA9DCFaeQNipSGNAlIaUUpRoFU3oA2gWR0CegO7EHdGidX2UKGgGaAloD0MIiqvKvitRXUCUhpRSlGgVTegDaBZHQJ6D6i8Fpwl1fZQoaAZoCWgPQwgUBmUazWdmQJSGlFKUaBVN6ANoFkdAnofyzLOiWXV9lChoBmgJaA9DCAgGED4UGWJAlIaUUpRoFU3oA2gWR0CeiVPhhpg1dX2UKGgGaAloD0MIexaE8r6RZ0CUhpRSlGgVTegDaBZHQJ6Nbch1Tzd1fZQoaAZoCWgPQwgfoWZIlXBkQJSGlFKUaBVN6ANoFkdAnpJhj8UEgXV9lChoBmgJaA9DCOs6VFMSimNAlIaUUpRoFU3oA2gWR0CeknD5TIeYdX2UKGgGaAloD0MIodgKmhY9ZUCUhpRSlGgVTegDaBZHQJ6ZOhAWznl1fZQoaAZoCWgPQwgqO/2gLuBeQJSGlFKUaBVN6ANoFkdAnpuVspG4JHV9lChoBmgJaA9DCHo2qz5XmFxAlIaUUpRoFU3oA2gWR0Ceoha/h2nsdX2UKGgGaAloD0MIYFrUJ7nLY0CUhpRSlGgVTegDaBZHQJ6i+c2BJ7N1fZQoaAZoCWgPQwhSf73CgtdhQJSGlFKUaBVN6ANoFkdAnqTAPEsJ6nV9lChoBmgJaA9DCP6ZQXxg+15AlIaUUpRoFU3oA2gWR0CepnwBHTZydX2UKGgGaAloD0MIrBqEud2mb0CUhpRSlGgVTYQCaBZHQJ6pT3rUsnR1fZQoaAZoCWgPQwiIK2fvjBJhQJSGlFKUaBVN6ANoFkdAnrCykCV8kXV9lChoBmgJaA9DCI2bGmg+FV5AlIaUUpRoFU3oA2gWR0CesXL/0dzXdX2UKGgGaAloD0MI6pPcYRMqX0CUhpRSlGgVTegDaBZHQJ66L/1g6U91fZQoaAZoCWgPQwjCaixhLQhyQJSGlFKUaBVNrwJoFkdAns7rUsnRcHV9lChoBmgJaA9DCKdB0TyA7mJAlIaUUpRoFU3oA2gWR0Ce1E6AvtdBdX2UKGgGaAloD0MIqdpugm/FZUCUhpRSlGgVTegDaBZHQJ7YNpKzzEt1fZQoaAZoCWgPQwiHFAMkms1iQJSGlFKUaBVN6ANoFkdAntmoYNy5qnV9lChoBmgJaA9DCO4iTFEuLm9AlIaUUpRoFU3xAmgWR0Ce3HRWcSXddX2UKGgGaAloD0MIj41AvK4RZkCUhpRSlGgVTegDaBZHQJ7dolqrR0F1fZQoaAZoCWgPQwghc2VQbdleQJSGlFKUaBVN6ANoFkdAnuJBhMJyAHV9lChoBmgJaA9DCIFfI0kQsG1AlIaUUpRoFU3jAmgWR0Ce6JPfsNUgdX2UKGgGaAloD0MI9utOdx5UY0CUhpRSlGgVTegDaBZHQJ7o2jqOcUd1fZQoaAZoCWgPQwgktrsHaIliQJSGlFKUaBVN6ANoFkdAnvFOZXuE3HV9lChoBmgJaA9DCMpOP6iLamBAlIaUUpRoFU3oA2gWR0Ce8jilBQendX2UKGgGaAloD0MIRrWIKCYsYECUhpRSlGgVTegDaBZHQJ7z/edkJ8h1fZQoaAZoCWgPQwggelImtRdhQJSGlFKUaBVN6ANoFkdAnvW7iZOSGXV9lChoBmgJaA9DCO3T8ZgB6W5AlIaUUpRoFU15A2gWR0Ce+fpBomG/dX2UKGgGaAloD0MIQRAgQ8dOXkCUhpRSlGgVTegDaBZHQJ8ACXrt3Oh1fZQoaAZoCWgPQwgZjuczIPlnQJSGlFKUaBVN6ANoFkdAnwkeI68xsXV9lChoBmgJaA9DCPvNxHThInBAlIaUUpRoFU1AAmgWR0CfC0Q5WBBidX2UKGgGaAloD0MIniRdM3mDYUCUhpRSlGgVTegDaBZHQJ8LjFdcB2h1fZQoaAZoCWgPQwjK3lLOFyVgQJSGlFKUaBVN6ANoFkdAnyH9iUgSvnV9lChoBmgJaA9DCOCGGK/5PmFAlIaUUpRoFU3oA2gWR0CfJXmygPEsdX2UKGgGaAloD0MI58jKL4P6ZUCUhpRSlGgVTegDaBZHQJ8m0vCdjG11fZQoaAZoCWgPQwgdqinJOqRgQJSGlFKUaBVN6ANoFkdAnyl77oB7u3V9lChoBmgJaA9DCMqmXOHdzmJAlIaUUpRoFU3oA2gWR0CfKnsN2C/XdX2UKGgGaAloD0MIZcQFoNHncECUhpRSlGgVTcICaBZHQJ8sOEZiuuB1fZQoaAZoCWgPQwgaprbUwXpjQJSGlFKUaBVN6ANoFkdAny7tB0IToXV9lChoBmgJaA9DCFzHuOLiM2JAlIaUUpRoFU3oA2gWR0CfNQOI68xsdX2UKGgGaAloD0MIBrggWxawcUCUhpRSlGgVTTADaBZHQJ86/GtITXd1fZQoaAZoCWgPQwh1c/G3Pb5rQJSGlFKUaBVNoANoFkdAnz1X0kGA1HV9lChoBmgJaA9DCMbgYdq3wmNAlIaUUpRoFU3oA2gWR0CfPjNS619fdX2UKGgGaAloD0MIC2MLQY62Y0CUhpRSlGgVTegDaBZHQJ8/2D9Oymh1fZQoaAZoCWgPQwgyqgzj7m5vQJSGlFKUaBVNCQNoFkdAn0ez8UEgXHV9lChoBmgJaA9DCOdWCKuxo2RAlIaUUpRoFU3oA2gWR0CfS9jgydnTdX2UKGgGaAloD0MIexaE8j5YZ0CUhpRSlGgVTegDaBZHQJ9YA29+PR11fZQoaAZoCWgPQwiskV1pGYJiQJSGlFKUaBVN6ANoFkdAn1hZIlMRH3V9lChoBmgJaA9DCCI4LuMmD2NAlIaUUpRoFU3oA2gWR0Cfb5NH6MzedX2UKGgGaAloD0MIEMtmDslNYkCUhpRSlGgVTegDaBZHQJ9zFZX+2mZ1fZQoaAZoCWgPQwgSh2wgXa1kQJSGlFKUaBVN6ANoFkdAn3R0wJw84nV9lChoBmgJaA9DCMDo8uZw32JAlIaUUpRoFU3oA2gWR0CfdydDIBBBdX2UKGgGaAloD0MIWWq93+hUY0CUhpRSlGgVTegDaBZHQJ94Pzwtrbh1fZQoaAZoCWgPQwj7rDJTWu9fQJSGlFKUaBVN6ANoFkdAn3oGIKtxMnV9lChoBmgJaA9DCFyv6UFBjF5AlIaUUpRoFU3oA2gWR0CffHePaL4vdX2UKGgGaAloD0MIAeDYs+c7YkCUhpRSlGgVTegDaBZHQJ+Cj8rI5o51fZQoaAZoCWgPQwgmUprN40ZfQJSGlFKUaBVN6ANoFkdAn4g9F8XvY3V9lChoBmgJaA9DCIEgQIaOW2JAlIaUUpRoFU3oA2gWR0CfiqlANXo1dX2UKGgGaAloD0MI/tXjvlVGZkCUhpRSlGgVTegDaBZHQJ+LiZF5Oah1fZQoaAZoCWgPQwjRWPs7WxxjQJSGlFKUaBVN6ANoFkdAn41QXyiEhHV9lChoBmgJaA9DCOhmf6BceG5AlIaUUpRoFU3HAmgWR0Cfk+7yxzJZdX2UKGgGaAloD0MIp1oLs9A7cECUhpRSlGgVTaUBaBZHQJ+VTJNj9XN1fZQoaAZoCWgPQwggfZOmQV5fQJSGlFKUaBVN6ANoFkdAn5VO63AmA3V9lChoBmgJaA9DCC2Xjc7542RAlIaUUpRoFU3oA2gWR0CfmOA3DNyHdX2UKGgGaAloD0MIfqmfN5V1akCUhpRSlGgVTaQCaBZHQJ+avvG6wt91fZQoaAZoCWgPQwgRixh2mPFtQJSGlFKUaBVNjwFoFkdAn59LYbsF+3V9lChoBmgJaA9DCAx2w7bFtWtAlIaUUpRoFU3ZAmgWR0Cfoa64lQdkdX2UKGgGaAloD0MIlG3gDtQtYECUhpRSlGgVTegDaBZHQJ+jdjVhCt11fZQoaAZoCWgPQwjRdHYyOD9wQJSGlFKUaBVNFQNoFkdAn6PLaufVZ3V9lChoBmgJaA9DCI6s/DIY+GxAlIaUUpRoFU3oAWgWR0CfpwU9ZA6ddWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9a58654950>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9a586549e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9a58654a70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9a58654b00>", "_build": "<function ActorCriticPolicy._build at 0x7f9a58654b90>", "forward": "<function ActorCriticPolicy.forward at 0x7f9a58654c20>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9a58654cb0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9a58654d40>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9a58654dd0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9a58654e60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9a58654ef0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f9a58695ea0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651825240.0414546, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADNLFj10a4q8u/luvQYcQzsBMlU97+0dPgAAgD8AAIA/gESAvYv2mj2rDN09l4BXvnhL9Dxh4zE9AAAAAAAAAADKAIs+68YrP30cBbz7u9e+N1KnPrKEC74AAAAAAAAAADMzZbsJZAI9khEAPt+si77nLsQ8jR02PQAAAAAAAAAAM9dbPT0gPbvy3Pu75q+zPIIC3zwm+pi9AACAPwAAgD/NrIW6rB2zP0OZ0726uAO/QsqbOq64vzwAAAAAAAAAACaOF748vqI/SsQDv2euFL/2AoO+1JFLvgAAAAAAAAAAAKQTPGykobsi9y491us+PLcB8LwqByY9AACAPwAAgD+jjIG+Cf4fP5hWdj6MSsK+asIPvkpzQD4AAAAAAAAAAIBhgj102Ec/ogw1vQJU0b7oD789X4G4vQAAAAAAAAAAmoWVu8P5O7oL77czZz8EMEB1nros6LmzAACAPwAAgD+zEgs9bw0fPbtLYb5HEpa+1/qVvbo+rr0AAAAAAAAAAJrI9LzTFaw/NteZvve/3r7OKWa8xvQavgAAAAAAAAAAzeA+PANYSbxDN+s8GH6APXUmfr1yZri5AACAPwAAgD8AAP87aCC0P149xz5U+cG9bJz1u3Z0cr0AAAAAAAAAAPOjCb6mQ28/rsggvpK3/75R1ku+lhdpPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAQAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMITBjNyvZecUCUhpRSlIwBbJRL8owBdJRHQKGuZfLLZBd1fZQoaAZoCWgPQwhmMbH5+GNyQJSGlFKUaBVNgAFoFkdAoa6vrleWwHV9lChoBmgJaA9DCGXggJbuP3BAlIaUUpRoFUvraBZHQKGu3t/nW8R1fZQoaAZoCWgPQwiSlzWxAMxyQJSGlFKUaBVL0mgWR0Chrt79ycTbdX2UKGgGaAloD0MIw/UoXI9oaECUhpRSlGgVTegDaBZHQKGu7ZvkzXV1fZQoaAZoCWgPQwi4OgDibmJyQJSGlFKUaBVL1mgWR0Chr3paJQ+EdX2UKGgGaAloD0MIlQuVf21lcUCUhpRSlGgVS99oFkdAoa/asIVuaXV9lChoBmgJaA9DCLoSgeqftnJAlIaUUpRoFUvsaBZHQKGv54Irvst1fZQoaAZoCWgPQwijPskd9udxQJSGlFKUaBVL6WgWR0ChsByCnP3SdX2UKGgGaAloD0MI0o+GU+aIb0CUhpRSlGgVS9loFkdAobBpooNNJ3V9lChoBmgJaA9DCHHGMCeoE3FAlIaUUpRoFU0NAWgWR0ChsJOq//NrdX2UKGgGaAloD0MI7uvAOaMIckCUhpRSlGgVS+NoFkdAobD5Z2ZAp3V9lChoBmgJaA9DCCGsxhLWenJAlIaUUpRoFUvdaBZHQKGxDFDOTq11fZQoaAZoCWgPQwgL0SFw5G5wQJSGlFKUaBVL42gWR0ChsURdQfp2dX2UKGgGaAloD0MIMUW5NL4DcUCUhpRSlGgVS/hoFkdAobFxz90ihXV9lChoBmgJaA9DCHWw/s+h6XJAlIaUUpRoFUvmaBZHQKGxv6E8JUp1fZQoaAZoCWgPQwioctpT8tRwQJSGlFKUaBVL6mgWR0ChsdpqqOtGdX2UKGgGaAloD0MIL8A+OrWYckCUhpRSlGgVTQQBaBZHQKGx8lKK5091fZQoaAZoCWgPQwhzafzC62NyQJSGlFKUaBVL/2gWR0Chsg3Hq/ucdX2UKGgGaAloD0MI9tGpKx8pbkCUhpRSlGgVS9RoFkdAobJ+uaF23nV9lChoBmgJaA9DCO1/gLVqynJAlIaUUpRoFUvxaBZHQKGyfrt3OfN1fZQoaAZoCWgPQwj6R9+kqa9wQJSGlFKUaBVNBwFoFkdAobNPcafjCHV9lChoBmgJaA9DCF5HHLJBPnFAlIaUUpRoFUveaBZHQKGzT+kP+XJ1fZQoaAZoCWgPQwhiaHVyhqBnQJSGlFKUaBVN6ANoFkdAobNzTKDCg3V9lChoBmgJaA9DCOHra13qGHBAlIaUUpRoFU0EAWgWR0Chs4Z6Uqx1dX2UKGgGaAloD0MI3A2itWK5cUCUhpRSlGgVS+FoFkdAobOMs8PnS3V9lChoBmgJaA9DCAUVVb9ST3BAlIaUUpRoFUvbaBZHQKGz2/mDDj11fZQoaAZoCWgPQwgOgo5W9ZZzQJSGlFKUaBVL2mgWR0Chs+uIqLCOdX2UKGgGaAloD0MIBwsnaT6WckCUhpRSlGgVS9ZoFkdAobQT961LJ3V9lChoBmgJaA9DCKn26XiMpnBAlIaUUpRoFUvlaBZHQKG0coDxLCh1fZQoaAZoCWgPQwiLUGwFDVJwQJSGlFKUaBVL8GgWR0ChtOns1KoRdX2UKGgGaAloD0MI/I123HDTbkCUhpRSlGgVS+5oFkdAobUAP/aQFXV9lChoBmgJaA9DCGgJMgJqXHBAlIaUUpRoFUv8aBZHQKG+0fcN6Pd1fZQoaAZoCWgPQwhOJm4VRClvQJSGlFKUaBVNCwFoFkdAob7ne7+T/3V9lChoBmgJaA9DCP1JfO6EgG9AlIaUUpRoFUvraBZHQKG/EgnMMZx1fZQoaAZoCWgPQwh5lEp4wvNyQJSGlFKUaBVL/WgWR0Chv02GRFI/dX2UKGgGaAloD0MI8G5lic6fckCUhpRSlGgVS9RoFkdAob+WmLtNSXV9lChoBmgJaA9DCOwxkdIsVXNAlIaUUpRoFUvXaBZHQKG/t6sySFJ1fZQoaAZoCWgPQwhXPsvz4LxyQJSGlFKUaBVL62gWR0Chv8Y1He7+dX2UKGgGaAloD0MIo8nFGNhcb0CUhpRSlGgVS/xoFkdAocAvEsJ6Y3V9lChoBmgJaA9DCHb8FwiCT3JAlIaUUpRoFUveaBZHQKHANUxVQyh1fZQoaAZoCWgPQwhQqn063m9yQJSGlFKUaBVNFQFoFkdAocBRFgDzRXV9lChoBmgJaA9DCNAPI4RH3W5AlIaUUpRoFUvyaBZHQKHAZT9bX6J1fZQoaAZoCWgPQwjz5nCtthBwQJSGlFKUaBVNAAFoFkdAocDG67NB4XV9lChoBmgJaA9DCHiAJy0c4HJAlIaUUpRoFUvUaBZHQKHBHCJoCdV1fZQoaAZoCWgPQwjnj2ltmm1xQJSGlFKUaBVL72gWR0ChwV5DiOvMdX2UKGgGaAloD0MItVTejrB0cUCUhpRSlGgVTRsBaBZHQKHBeRHww0x1fZQoaAZoCWgPQwiCAYQPZRNwQJSGlFKUaBVL02gWR0ChwXxnnMdMdX2UKGgGaAloD0MIxoUDIdktZUCUhpRSlGgVTegDaBZHQKHBm6J66at1fZQoaAZoCWgPQwhm+E830EJwQJSGlFKUaBVNBgFoFkdAocIp/LDAJ3V9lChoBmgJaA9DCPmBqzzBR3FAlIaUUpRoFUv+aBZHQKHCOtrbg0l1fZQoaAZoCWgPQwhXW7G/bBtzQJSGlFKUaBVL1mgWR0Chwj3mV7hOdX2UKGgGaAloD0MI73IR34kVb0CUhpRSlGgVS9hoFkdAocJfQyAQQXV9lChoBmgJaA9DCIRkARP4G3NAlIaUUpRoFU0EAWgWR0Chwn59NN8FdX2UKGgGaAloD0MI6pRHN8IEckCUhpRSlGgVS/JoFkdAocK0LH+6y3V9lChoBmgJaA9DCOvHJvmRcXJAlIaUUpRoFUvbaBZHQKHCyys0YTF1fZQoaAZoCWgPQwgdrP9z2OBxQJSGlFKUaBVL+GgWR0ChwyEsrd30dX2UKGgGaAloD0MIB1+YTFWpcUCUhpRSlGgVS/1oFkdAocNgZOzpo3V9lChoBmgJaA9DCI9wWvDil3BAlIaUUpRoFU0FAWgWR0Chw2YjjaPCdX2UKGgGaAloD0MISiTRy+jGcECUhpRSlGgVS/toFkdAocO2NgjQiXV9lChoBmgJaA9DCDpcqz2s0XFAlIaUUpRoFUvhaBZHQKHDuo1DSgJ1fZQoaAZoCWgPQwjmkT8YuJBxQJSGlFKUaBVL6GgWR0ChxCHtF8XvdX2UKGgGaAloD0MIcqYJ28+qcUCUhpRSlGgVS/1oFkdAocSBH5Jsf3V9lChoBmgJaA9DCODZHr2hr3JAlIaUUpRoFUvZaBZHQKHEpZVXFLp1fZQoaAZoCWgPQwjaVN0jG+FvQJSGlFKUaBVNGAFoFkdAocS2mYSg5HV9lChoBmgJaA9DCKu0xTU+H25AlIaUUpRoFUvoaBZHQKHE5CIDYAd1fZQoaAZoCWgPQwgfSN45lExzQJSGlFKUaBVNMQFoFkdAocTpnzxwynV9lChoBmgJaA9DCL+6KlDL3HJAlIaUUpRoFUvyaBZHQKHFJFqBVdZ1fZQoaAZoCWgPQwhbsFQXcC5xQJSGlFKUaBVNGwFoFkdAocV8THsC1nV9lChoBmgJaA9DCAAAAADAnnJAlIaUUpRoFUv0aBZHQKHFhb+Lm6p1fZQoaAZoCWgPQwjG+ZtQSHVxQJSGlFKUaBVL22gWR0ChxawwblzVdX2UKGgGaAloD0MISFFn7uHLckCUhpRSlGgVTRgBaBZHQKHFtkFwDNh1fZQoaAZoCWgPQwiveOqRRuhyQJSGlFKUaBVL3WgWR0Chxegc1fmcdX2UKGgGaAloD0MIQ46tZ8gCckCUhpRSlGgVTSMBaBZHQKHGG93bEgp1fZQoaAZoCWgPQwgrhNVYgr5yQJSGlFKUaBVL/GgWR0ChxkDG1hLHdX2UKGgGaAloD0MIryXkgx5zcUCUhpRSlGgVS+toFkdAocZjMaCL/HV9lChoBmgJaA9DCD3TS4wlo3JAlIaUUpRoFU0DAWgWR0ChxqKCYkVvdX2UKGgGaAloD0MIHlGhunnrckCUhpRSlGgVS/FoFkdAocbaq6vq1XV9lChoBmgJaA9DCHL+JhTixHBAlIaUUpRoFUvYaBZHQKHG7E0BOpN1fZQoaAZoCWgPQwjVBFH3wZFwQJSGlFKUaBVL3WgWR0Chx047aIvbdX2UKGgGaAloD0MIQtE8gIXlcUCUhpRSlGgVS89oFkdAocdn99+gDnV9lChoBmgJaA9DCD4ipkQSG3JAlIaUUpRoFU0JAWgWR0Chx5ON5t3wdX2UKGgGaAloD0MIrU85JgvecUCUhpRSlGgVS/hoFkdAoceiGxlg+nV9lChoBmgJaA9DCHUfgNQm4HJAlIaUUpRoFU0aAWgWR0Chx9IgFHJ+dX2UKGgGaAloD0MInS/2Xjw0cECUhpRSlGgVS+toFkdAocgLrX18LXV9lChoBmgJaA9DCJXXSuiuBXFAlIaUUpRoFUvsaBZHQKHIRHRTjvN1fZQoaAZoCWgPQwi31awzfmdyQJSGlFKUaBVL/GgWR0ChyEtWdVebdX2UKGgGaAloD0MICOQSR56hb0CUhpRSlGgVS+BoFkdAochicNH6M3V9lChoBmgJaA9DCJD3qpWJN3FAlIaUUpRoFUv4aBZHQKHIb+1jRUp1fZQoaAZoCWgPQwi1iv7QzOFOQJSGlFKUaBVLvWgWR0ChyHyon8badX2UKGgGaAloD0MIQlw5e2d5cUCUhpRSlGgVS99oFkdAociPDej2z3V9lChoBmgJaA9DCN14d2QsiG9AlIaUUpRoFUvVaBZHQKHIlsgMc6x1fZQoaAZoCWgPQwinr+drli9xQJSGlFKUaBVL2mgWR0ChyTOpCKJmdX2UKGgGaAloD0MIv0hoy7ndb0CUhpRSlGgVS/poFkdAocmmdd3Sr3V9lChoBmgJaA9DCFLuPscHjXJAlIaUUpRoFU0bAWgWR0ChybsSkCV9dX2UKGgGaAloD0MIIm3jTxRZckCUhpRSlGgVS+BoFkdAocnfc+JP7HV9lChoBmgJaA9DCAH76NSV2XBAlIaUUpRoFUv6aBZHQKHKFzhgmZ51fZQoaAZoCWgPQwh96lildOBuQJSGlFKUaBVL9WgWR0ChylbMHKOldX2UKGgGaAloD0MIv5gtWZVxbkCUhpRSlGgVS/doFkdAocpuvllsg3V9lChoBmgJaA9DCAOXx5oRGHFAlIaUUpRoFUvnaBZHQKHKcxVQyh11ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 616, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:89d7b1f4635688a0261545502d3d65df393f6eace99547e1a16d8609b0d44373
3
- size 144048
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4d0214ea9210862e289a2fff0628c65e38087f5dc9ce4a8ef66af5496c1d9727
3
+ size 144012
ppo-LunarLander-v2/data CHANGED
@@ -4,19 +4,19 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7fddcbba3050>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fddcbba30e0>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fddcbba3170>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fddcbba3200>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7fddcbba3290>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7fddcbba3320>",
13
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fddcbba33b0>",
14
- "_predict": "<function ActorCriticPolicy._predict at 0x7fddcbba3440>",
15
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fddcbba34d0>",
16
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fddcbba3560>",
17
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fddcbba35f0>",
18
  "__abstractmethods__": "frozenset()",
19
- "_abc_impl": "<_abc_data object at 0x7fddcbbf72a0>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {},
@@ -47,7 +47,7 @@
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
- "start_time": 1651783505.1116066,
51
  "learning_rate": 0.0003,
52
  "tensorboard_log": null,
53
  "lr_schedule": {
@@ -56,11 +56,11 @@
56
  },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAbkM75HjlU/jTk0u+m4QL54IEq97ysRPAAAAAAAAAAAzWCEu8Qisj+NEP69lVCVvnuhlzu5sAY8AAAAAAAAAABmZR094WrhOQx2KbltRVa1o+iHO1WPTzgAAIA/AACAP61YDT6kfJM+tm/JvAXkkb4UmvS89drMPQAAAAAAAAAAze7JvXvqoLoayX85HA1wNFGclLoeUZO4AACAPwAAgD9mTlm7XPsHuuw+RzpVnDo15S6IOrK5brkAAIA/AACAPxNgRr5CdpA/7ssTvqprpL685DK+ZBmQPQAAAAAAAAAAzVq2Pg2obj8hXYc+vAt5vgeRjT76xRc8AAAAAAAAAACmwKA9cW0AuS7587riroi2SzpJOxTVEToAAIA/AACAP5pH0jx7ToK6f7qguotXlbVpwsE6/JW7OQAAgD8AAIA/s+6yPSmkb7q9NmS6Oa+JNVa2hzurNo05AACAPwAAgD9mvk47j1p/ulDP5zqEkuI1l8gMu6ivBroAAIA/AACAP/N/aj5xcC88/erZNf6c8TPwcMY9EWkZtQAAgD8AAIA/hiV+Pk8mKD9dui6+oq1hvpYMIr3+Gpq8AAAAAAAAAAD6wRy+AfwEPiyfij3Fr16+whQDvQMQYb0AAAAAAAAAALN7hb2uiai6VoKTOj7pijUIkKM6eGGpuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
63
- ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
  },
65
  "_last_original_obs": null,
66
  "_episode_num": 0,
@@ -69,13 +69,13 @@
69
  "_current_progress_remaining": -0.015808000000000044,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
- ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMImDEFa5xoZECUhpRSlIwBbJRN6AOMAXSUR0Cd+s7ZFocrdX2UKGgGaAloD0MIQ3HHm3zgYECUhpRSlGgVTegDaBZHQJ3/yL876pJ1fZQoaAZoCWgPQwj5adyb321hQJSGlFKUaBVN6ANoFkdAngCb4vexfXV9lChoBmgJaA9DCA1VMZV+v2VAlIaUUpRoFU3oA2gWR0CeAk1DBuXNdX2UKGgGaAloD0MIH7x2acOtXUCUhpRSlGgVTegDaBZHQJ4CeSzPa+N1fZQoaAZoCWgPQwiDv1/MlgpmQJSGlFKUaBVN6ANoFkdAngPq/RE4N3V9lChoBmgJaA9DCM2VQbXBHWRAlIaUUpRoFU3oA2gWR0CeBw4rjHXFdX2UKGgGaAloD0MIXmkZqfdVXkCUhpRSlGgVTegDaBZHQJ4OrM4cWCV1fZQoaAZoCWgPQwi7fyxEh7ZdQJSGlFKUaBVN6ANoFkdAnheK1PWQOnV9lChoBmgJaA9DCMy0/SsrbFxAlIaUUpRoFU3oA2gWR0CeMJjgydnTdX2UKGgGaAloD0MIb4Jvmj5Db0CUhpRSlGgVTdEDaBZHQJ4zkQvpQk51fZQoaAZoCWgPQwg5ud+hqJBhQJSGlFKUaBVN6ANoFkdAnje1G9YfXHV9lChoBmgJaA9DCOavkLkyV2BAlIaUUpRoFU3oA2gWR0CeOTpudf9hdX2UKGgGaAloD0MIsfm4NlSoOkCUhpRSlGgVTSMBaBZHQJ49dzRx95R1fZQoaAZoCWgPQwglzLT9K5ptQJSGlFKUaBVNbwJoFkdAnkJnYcvM83V9lChoBmgJaA9DCI3SpX/JB2dAlIaUUpRoFU3oA2gWR0CeQnWw/xDtdX2UKGgGaAloD0MINGWnH9TGY0CUhpRSlGgVTegDaBZHQJ5I+5RTCLx1fZQoaAZoCWgPQwg3NdB8zjdbQJSGlFKUaBVN6ANoFkdAnksqaG5+Y3V9lChoBmgJaA9DCPVKWYY4LlpAlIaUUpRoFU3oA2gWR0CeTJr1uivgdX2UKGgGaAloD0MIar+1EyW2Y0CUhpRSlGgVTegDaBZHQJ5RT5M10kp1fZQoaAZoCWgPQwjJkGPrGaFeQJSGlFKUaBVN6ANoFkdAnlIpha1Ti3V9lChoBmgJaA9DCOse2Vw1Q2NAlIaUUpRoFU3oA2gWR0CeU8AVwgkkdX2UKGgGaAloD0MIQx1WuOWCZUCUhpRSlGgVTegDaBZHQJ5T7wI+nqF1fZQoaAZoCWgPQwjYDHBBNhJjQJSGlFKUaBVN6ANoFkdAnlV4+OfdynV9lChoBmgJaA9DCF5MM93rykNAlIaUUpRoFU1CAWgWR0CeX9Dl5nlGdX2UKGgGaAloD0MI9fOmIhXgXUCUhpRSlGgVTegDaBZHQJ5gjIgeRxN1fZQoaAZoCWgPQwjiBnx+2CpxQJSGlFKUaBVNYQFoFkdAnml6FqSHM3V9lChoBmgJaA9DCFaeQNipSGNAlIaUUpRoFU3oA2gWR0CegO7EHdGidX2UKGgGaAloD0MIiqvKvitRXUCUhpRSlGgVTegDaBZHQJ6D6i8Fpwl1fZQoaAZoCWgPQwgUBmUazWdmQJSGlFKUaBVN6ANoFkdAnofyzLOiWXV9lChoBmgJaA9DCAgGED4UGWJAlIaUUpRoFU3oA2gWR0CeiVPhhpg1dX2UKGgGaAloD0MIexaE8r6RZ0CUhpRSlGgVTegDaBZHQJ6Nbch1Tzd1fZQoaAZoCWgPQwgfoWZIlXBkQJSGlFKUaBVN6ANoFkdAnpJhj8UEgXV9lChoBmgJaA9DCOs6VFMSimNAlIaUUpRoFU3oA2gWR0CeknD5TIeYdX2UKGgGaAloD0MIodgKmhY9ZUCUhpRSlGgVTegDaBZHQJ6ZOhAWznl1fZQoaAZoCWgPQwgqO/2gLuBeQJSGlFKUaBVN6ANoFkdAnpuVspG4JHV9lChoBmgJaA9DCHo2qz5XmFxAlIaUUpRoFU3oA2gWR0Ceoha/h2nsdX2UKGgGaAloD0MIYFrUJ7nLY0CUhpRSlGgVTegDaBZHQJ6i+c2BJ7N1fZQoaAZoCWgPQwhSf73CgtdhQJSGlFKUaBVN6ANoFkdAnqTAPEsJ6nV9lChoBmgJaA9DCP6ZQXxg+15AlIaUUpRoFU3oA2gWR0CepnwBHTZydX2UKGgGaAloD0MIrBqEud2mb0CUhpRSlGgVTYQCaBZHQJ6pT3rUsnR1fZQoaAZoCWgPQwiIK2fvjBJhQJSGlFKUaBVN6ANoFkdAnrCykCV8kXV9lChoBmgJaA9DCI2bGmg+FV5AlIaUUpRoFU3oA2gWR0CesXL/0dzXdX2UKGgGaAloD0MI6pPcYRMqX0CUhpRSlGgVTegDaBZHQJ66L/1g6U91fZQoaAZoCWgPQwjCaixhLQhyQJSGlFKUaBVNrwJoFkdAns7rUsnRcHV9lChoBmgJaA9DCKdB0TyA7mJAlIaUUpRoFU3oA2gWR0Ce1E6AvtdBdX2UKGgGaAloD0MIqdpugm/FZUCUhpRSlGgVTegDaBZHQJ7YNpKzzEt1fZQoaAZoCWgPQwiHFAMkms1iQJSGlFKUaBVN6ANoFkdAntmoYNy5qnV9lChoBmgJaA9DCO4iTFEuLm9AlIaUUpRoFU3xAmgWR0Ce3HRWcSXddX2UKGgGaAloD0MIj41AvK4RZkCUhpRSlGgVTegDaBZHQJ7dolqrR0F1fZQoaAZoCWgPQwghc2VQbdleQJSGlFKUaBVN6ANoFkdAnuJBhMJyAHV9lChoBmgJaA9DCIFfI0kQsG1AlIaUUpRoFU3jAmgWR0Ce6JPfsNUgdX2UKGgGaAloD0MI9utOdx5UY0CUhpRSlGgVTegDaBZHQJ7o2jqOcUd1fZQoaAZoCWgPQwgktrsHaIliQJSGlFKUaBVN6ANoFkdAnvFOZXuE3HV9lChoBmgJaA9DCMpOP6iLamBAlIaUUpRoFU3oA2gWR0Ce8jilBQendX2UKGgGaAloD0MIRrWIKCYsYECUhpRSlGgVTegDaBZHQJ7z/edkJ8h1fZQoaAZoCWgPQwggelImtRdhQJSGlFKUaBVN6ANoFkdAnvW7iZOSGXV9lChoBmgJaA9DCO3T8ZgB6W5AlIaUUpRoFU15A2gWR0Ce+fpBomG/dX2UKGgGaAloD0MIQRAgQ8dOXkCUhpRSlGgVTegDaBZHQJ8ACXrt3Oh1fZQoaAZoCWgPQwgZjuczIPlnQJSGlFKUaBVN6ANoFkdAnwkeI68xsXV9lChoBmgJaA9DCPvNxHThInBAlIaUUpRoFU1AAmgWR0CfC0Q5WBBidX2UKGgGaAloD0MIniRdM3mDYUCUhpRSlGgVTegDaBZHQJ8LjFdcB2h1fZQoaAZoCWgPQwjK3lLOFyVgQJSGlFKUaBVN6ANoFkdAnyH9iUgSvnV9lChoBmgJaA9DCOCGGK/5PmFAlIaUUpRoFU3oA2gWR0CfJXmygPEsdX2UKGgGaAloD0MI58jKL4P6ZUCUhpRSlGgVTegDaBZHQJ8m0vCdjG11fZQoaAZoCWgPQwgdqinJOqRgQJSGlFKUaBVN6ANoFkdAnyl77oB7u3V9lChoBmgJaA9DCMqmXOHdzmJAlIaUUpRoFU3oA2gWR0CfKnsN2C/XdX2UKGgGaAloD0MIZcQFoNHncECUhpRSlGgVTcICaBZHQJ8sOEZiuuB1fZQoaAZoCWgPQwgaprbUwXpjQJSGlFKUaBVN6ANoFkdAny7tB0IToXV9lChoBmgJaA9DCFzHuOLiM2JAlIaUUpRoFU3oA2gWR0CfNQOI68xsdX2UKGgGaAloD0MIBrggWxawcUCUhpRSlGgVTTADaBZHQJ86/GtITXd1fZQoaAZoCWgPQwh1c/G3Pb5rQJSGlFKUaBVNoANoFkdAnz1X0kGA1HV9lChoBmgJaA9DCMbgYdq3wmNAlIaUUpRoFU3oA2gWR0CfPjNS619fdX2UKGgGaAloD0MIC2MLQY62Y0CUhpRSlGgVTegDaBZHQJ8/2D9Oymh1fZQoaAZoCWgPQwgyqgzj7m5vQJSGlFKUaBVNCQNoFkdAn0ez8UEgXHV9lChoBmgJaA9DCOdWCKuxo2RAlIaUUpRoFU3oA2gWR0CfS9jgydnTdX2UKGgGaAloD0MIexaE8j5YZ0CUhpRSlGgVTegDaBZHQJ9YA29+PR11fZQoaAZoCWgPQwiskV1pGYJiQJSGlFKUaBVN6ANoFkdAn1hZIlMRH3V9lChoBmgJaA9DCCI4LuMmD2NAlIaUUpRoFU3oA2gWR0Cfb5NH6MzedX2UKGgGaAloD0MIEMtmDslNYkCUhpRSlGgVTegDaBZHQJ9zFZX+2mZ1fZQoaAZoCWgPQwgSh2wgXa1kQJSGlFKUaBVN6ANoFkdAn3R0wJw84nV9lChoBmgJaA9DCMDo8uZw32JAlIaUUpRoFU3oA2gWR0CfdydDIBBBdX2UKGgGaAloD0MIWWq93+hUY0CUhpRSlGgVTegDaBZHQJ94Pzwtrbh1fZQoaAZoCWgPQwj7rDJTWu9fQJSGlFKUaBVN6ANoFkdAn3oGIKtxMnV9lChoBmgJaA9DCFyv6UFBjF5AlIaUUpRoFU3oA2gWR0CffHePaL4vdX2UKGgGaAloD0MIAeDYs+c7YkCUhpRSlGgVTegDaBZHQJ+Cj8rI5o51fZQoaAZoCWgPQwgmUprN40ZfQJSGlFKUaBVN6ANoFkdAn4g9F8XvY3V9lChoBmgJaA9DCIEgQIaOW2JAlIaUUpRoFU3oA2gWR0CfiqlANXo1dX2UKGgGaAloD0MI/tXjvlVGZkCUhpRSlGgVTegDaBZHQJ+LiZF5Oah1fZQoaAZoCWgPQwjRWPs7WxxjQJSGlFKUaBVN6ANoFkdAn41QXyiEhHV9lChoBmgJaA9DCOhmf6BceG5AlIaUUpRoFU3HAmgWR0Cfk+7yxzJZdX2UKGgGaAloD0MIp1oLs9A7cECUhpRSlGgVTaUBaBZHQJ+VTJNj9XN1fZQoaAZoCWgPQwggfZOmQV5fQJSGlFKUaBVN6ANoFkdAn5VO63AmA3V9lChoBmgJaA9DCC2Xjc7542RAlIaUUpRoFU3oA2gWR0CfmOA3DNyHdX2UKGgGaAloD0MIfqmfN5V1akCUhpRSlGgVTaQCaBZHQJ+avvG6wt91fZQoaAZoCWgPQwgRixh2mPFtQJSGlFKUaBVNjwFoFkdAn59LYbsF+3V9lChoBmgJaA9DCAx2w7bFtWtAlIaUUpRoFU3ZAmgWR0Cfoa64lQdkdX2UKGgGaAloD0MIlG3gDtQtYECUhpRSlGgVTegDaBZHQJ+jdjVhCt11fZQoaAZoCWgPQwjRdHYyOD9wQJSGlFKUaBVNFQNoFkdAn6PLaufVZ3V9lChoBmgJaA9DCI6s/DIY+GxAlIaUUpRoFU3oAWgWR0CfpwU9ZA6ddWUu"
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
76
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
  },
78
- "_n_updates": 248,
79
  "n_steps": 1024,
80
  "gamma": 0.999,
81
  "gae_lambda": 0.98,
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9a58654950>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9a586549e0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9a58654a70>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9a58654b00>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f9a58654b90>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f9a58654c20>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9a58654cb0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f9a58654d40>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9a58654dd0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9a58654e60>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9a58654ef0>",
18
  "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f9a58695ea0>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {},
 
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
+ "start_time": 1651825240.0414546,
51
  "learning_rate": 0.0003,
52
  "tensorboard_log": null,
53
  "lr_schedule": {
 
56
  },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADNLFj10a4q8u/luvQYcQzsBMlU97+0dPgAAgD8AAIA/gESAvYv2mj2rDN09l4BXvnhL9Dxh4zE9AAAAAAAAAADKAIs+68YrP30cBbz7u9e+N1KnPrKEC74AAAAAAAAAADMzZbsJZAI9khEAPt+si77nLsQ8jR02PQAAAAAAAAAAM9dbPT0gPbvy3Pu75q+zPIIC3zwm+pi9AACAPwAAgD/NrIW6rB2zP0OZ0726uAO/QsqbOq64vzwAAAAAAAAAACaOF748vqI/SsQDv2euFL/2AoO+1JFLvgAAAAAAAAAAAKQTPGykobsi9y491us+PLcB8LwqByY9AACAPwAAgD+jjIG+Cf4fP5hWdj6MSsK+asIPvkpzQD4AAAAAAAAAAIBhgj102Ec/ogw1vQJU0b7oD789X4G4vQAAAAAAAAAAmoWVu8P5O7oL77czZz8EMEB1nros6LmzAACAPwAAgD+zEgs9bw0fPbtLYb5HEpa+1/qVvbo+rr0AAAAAAAAAAJrI9LzTFaw/NteZvve/3r7OKWa8xvQavgAAAAAAAAAAzeA+PANYSbxDN+s8GH6APXUmfr1yZri5AACAPwAAgD8AAP87aCC0P149xz5U+cG9bJz1u3Z0cr0AAAAAAAAAAPOjCb6mQ28/rsggvpK3/75R1ku+lhdpPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAQAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
  },
65
  "_last_original_obs": null,
66
  "_episode_num": 0,
 
69
  "_current_progress_remaining": -0.015808000000000044,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVNRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMITBjNyvZecUCUhpRSlIwBbJRL8owBdJRHQKGuZfLLZBd1fZQoaAZoCWgPQwhmMbH5+GNyQJSGlFKUaBVNgAFoFkdAoa6vrleWwHV9lChoBmgJaA9DCGXggJbuP3BAlIaUUpRoFUvraBZHQKGu3t/nW8R1fZQoaAZoCWgPQwiSlzWxAMxyQJSGlFKUaBVL0mgWR0Chrt79ycTbdX2UKGgGaAloD0MIw/UoXI9oaECUhpRSlGgVTegDaBZHQKGu7ZvkzXV1fZQoaAZoCWgPQwi4OgDibmJyQJSGlFKUaBVL1mgWR0Chr3paJQ+EdX2UKGgGaAloD0MIlQuVf21lcUCUhpRSlGgVS99oFkdAoa/asIVuaXV9lChoBmgJaA9DCLoSgeqftnJAlIaUUpRoFUvsaBZHQKGv54Irvst1fZQoaAZoCWgPQwijPskd9udxQJSGlFKUaBVL6WgWR0ChsByCnP3SdX2UKGgGaAloD0MI0o+GU+aIb0CUhpRSlGgVS9loFkdAobBpooNNJ3V9lChoBmgJaA9DCHHGMCeoE3FAlIaUUpRoFU0NAWgWR0ChsJOq//NrdX2UKGgGaAloD0MI7uvAOaMIckCUhpRSlGgVS+NoFkdAobD5Z2ZAp3V9lChoBmgJaA9DCCGsxhLWenJAlIaUUpRoFUvdaBZHQKGxDFDOTq11fZQoaAZoCWgPQwgL0SFw5G5wQJSGlFKUaBVL42gWR0ChsURdQfp2dX2UKGgGaAloD0MIMUW5NL4DcUCUhpRSlGgVS/hoFkdAobFxz90ihXV9lChoBmgJaA9DCHWw/s+h6XJAlIaUUpRoFUvmaBZHQKGxv6E8JUp1fZQoaAZoCWgPQwioctpT8tRwQJSGlFKUaBVL6mgWR0ChsdpqqOtGdX2UKGgGaAloD0MIL8A+OrWYckCUhpRSlGgVTQQBaBZHQKGx8lKK5091fZQoaAZoCWgPQwhzafzC62NyQJSGlFKUaBVL/2gWR0Chsg3Hq/ucdX2UKGgGaAloD0MI9tGpKx8pbkCUhpRSlGgVS9RoFkdAobJ+uaF23nV9lChoBmgJaA9DCO1/gLVqynJAlIaUUpRoFUvxaBZHQKGyfrt3OfN1fZQoaAZoCWgPQwj6R9+kqa9wQJSGlFKUaBVNBwFoFkdAobNPcafjCHV9lChoBmgJaA9DCF5HHLJBPnFAlIaUUpRoFUveaBZHQKGzT+kP+XJ1fZQoaAZoCWgPQwhiaHVyhqBnQJSGlFKUaBVN6ANoFkdAobNzTKDCg3V9lChoBmgJaA9DCOHra13qGHBAlIaUUpRoFU0EAWgWR0Chs4Z6Uqx1dX2UKGgGaAloD0MI3A2itWK5cUCUhpRSlGgVS+FoFkdAobOMs8PnS3V9lChoBmgJaA9DCAUVVb9ST3BAlIaUUpRoFUvbaBZHQKGz2/mDDj11fZQoaAZoCWgPQwgOgo5W9ZZzQJSGlFKUaBVL2mgWR0Chs+uIqLCOdX2UKGgGaAloD0MIBwsnaT6WckCUhpRSlGgVS9ZoFkdAobQT961LJ3V9lChoBmgJaA9DCKn26XiMpnBAlIaUUpRoFUvlaBZHQKG0coDxLCh1fZQoaAZoCWgPQwiLUGwFDVJwQJSGlFKUaBVL8GgWR0ChtOns1KoRdX2UKGgGaAloD0MI/I123HDTbkCUhpRSlGgVS+5oFkdAobUAP/aQFXV9lChoBmgJaA9DCGgJMgJqXHBAlIaUUpRoFUv8aBZHQKG+0fcN6Pd1fZQoaAZoCWgPQwhOJm4VRClvQJSGlFKUaBVNCwFoFkdAob7ne7+T/3V9lChoBmgJaA9DCP1JfO6EgG9AlIaUUpRoFUvraBZHQKG/EgnMMZx1fZQoaAZoCWgPQwh5lEp4wvNyQJSGlFKUaBVL/WgWR0Chv02GRFI/dX2UKGgGaAloD0MI8G5lic6fckCUhpRSlGgVS9RoFkdAob+WmLtNSXV9lChoBmgJaA9DCOwxkdIsVXNAlIaUUpRoFUvXaBZHQKG/t6sySFJ1fZQoaAZoCWgPQwhXPsvz4LxyQJSGlFKUaBVL62gWR0Chv8Y1He7+dX2UKGgGaAloD0MIo8nFGNhcb0CUhpRSlGgVS/xoFkdAocAvEsJ6Y3V9lChoBmgJaA9DCHb8FwiCT3JAlIaUUpRoFUveaBZHQKHANUxVQyh1fZQoaAZoCWgPQwhQqn063m9yQJSGlFKUaBVNFQFoFkdAocBRFgDzRXV9lChoBmgJaA9DCNAPI4RH3W5AlIaUUpRoFUvyaBZHQKHAZT9bX6J1fZQoaAZoCWgPQwjz5nCtthBwQJSGlFKUaBVNAAFoFkdAocDG67NB4XV9lChoBmgJaA9DCHiAJy0c4HJAlIaUUpRoFUvUaBZHQKHBHCJoCdV1fZQoaAZoCWgPQwjnj2ltmm1xQJSGlFKUaBVL72gWR0ChwV5DiOvMdX2UKGgGaAloD0MItVTejrB0cUCUhpRSlGgVTRsBaBZHQKHBeRHww0x1fZQoaAZoCWgPQwiCAYQPZRNwQJSGlFKUaBVL02gWR0ChwXxnnMdMdX2UKGgGaAloD0MIxoUDIdktZUCUhpRSlGgVTegDaBZHQKHBm6J66at1fZQoaAZoCWgPQwhm+E830EJwQJSGlFKUaBVNBgFoFkdAocIp/LDAJ3V9lChoBmgJaA9DCPmBqzzBR3FAlIaUUpRoFUv+aBZHQKHCOtrbg0l1fZQoaAZoCWgPQwhXW7G/bBtzQJSGlFKUaBVL1mgWR0Chwj3mV7hOdX2UKGgGaAloD0MI73IR34kVb0CUhpRSlGgVS9hoFkdAocJfQyAQQXV9lChoBmgJaA9DCIRkARP4G3NAlIaUUpRoFU0EAWgWR0Chwn59NN8FdX2UKGgGaAloD0MI6pRHN8IEckCUhpRSlGgVS/JoFkdAocK0LH+6y3V9lChoBmgJaA9DCOvHJvmRcXJAlIaUUpRoFUvbaBZHQKHCyys0YTF1fZQoaAZoCWgPQwgdrP9z2OBxQJSGlFKUaBVL+GgWR0ChwyEsrd30dX2UKGgGaAloD0MIB1+YTFWpcUCUhpRSlGgVS/1oFkdAocNgZOzpo3V9lChoBmgJaA9DCI9wWvDil3BAlIaUUpRoFU0FAWgWR0Chw2YjjaPCdX2UKGgGaAloD0MISiTRy+jGcECUhpRSlGgVS/toFkdAocO2NgjQiXV9lChoBmgJaA9DCDpcqz2s0XFAlIaUUpRoFUvhaBZHQKHDuo1DSgJ1fZQoaAZoCWgPQwjmkT8YuJBxQJSGlFKUaBVL6GgWR0ChxCHtF8XvdX2UKGgGaAloD0MIcqYJ28+qcUCUhpRSlGgVS/1oFkdAocSBH5Jsf3V9lChoBmgJaA9DCODZHr2hr3JAlIaUUpRoFUvZaBZHQKHEpZVXFLp1fZQoaAZoCWgPQwjaVN0jG+FvQJSGlFKUaBVNGAFoFkdAocS2mYSg5HV9lChoBmgJaA9DCKu0xTU+H25AlIaUUpRoFUvoaBZHQKHE5CIDYAd1fZQoaAZoCWgPQwgfSN45lExzQJSGlFKUaBVNMQFoFkdAocTpnzxwynV9lChoBmgJaA9DCL+6KlDL3HJAlIaUUpRoFUvyaBZHQKHFJFqBVdZ1fZQoaAZoCWgPQwhbsFQXcC5xQJSGlFKUaBVNGwFoFkdAocV8THsC1nV9lChoBmgJaA9DCAAAAADAnnJAlIaUUpRoFUv0aBZHQKHFhb+Lm6p1fZQoaAZoCWgPQwjG+ZtQSHVxQJSGlFKUaBVL22gWR0ChxawwblzVdX2UKGgGaAloD0MISFFn7uHLckCUhpRSlGgVTRgBaBZHQKHFtkFwDNh1fZQoaAZoCWgPQwiveOqRRuhyQJSGlFKUaBVL3WgWR0Chxegc1fmcdX2UKGgGaAloD0MIQ46tZ8gCckCUhpRSlGgVTSMBaBZHQKHGG93bEgp1fZQoaAZoCWgPQwgrhNVYgr5yQJSGlFKUaBVL/GgWR0ChxkDG1hLHdX2UKGgGaAloD0MIryXkgx5zcUCUhpRSlGgVS+toFkdAocZjMaCL/HV9lChoBmgJaA9DCD3TS4wlo3JAlIaUUpRoFU0DAWgWR0ChxqKCYkVvdX2UKGgGaAloD0MIHlGhunnrckCUhpRSlGgVS/FoFkdAocbaq6vq1XV9lChoBmgJaA9DCHL+JhTixHBAlIaUUpRoFUvYaBZHQKHG7E0BOpN1fZQoaAZoCWgPQwjVBFH3wZFwQJSGlFKUaBVL3WgWR0Chx047aIvbdX2UKGgGaAloD0MIQtE8gIXlcUCUhpRSlGgVS89oFkdAocdn99+gDnV9lChoBmgJaA9DCD4ipkQSG3JAlIaUUpRoFU0JAWgWR0Chx5ON5t3wdX2UKGgGaAloD0MIrU85JgvecUCUhpRSlGgVS/hoFkdAoceiGxlg+nV9lChoBmgJaA9DCHUfgNQm4HJAlIaUUpRoFU0aAWgWR0Chx9IgFHJ+dX2UKGgGaAloD0MInS/2Xjw0cECUhpRSlGgVS+toFkdAocgLrX18LXV9lChoBmgJaA9DCJXXSuiuBXFAlIaUUpRoFUvsaBZHQKHIRHRTjvN1fZQoaAZoCWgPQwi31awzfmdyQJSGlFKUaBVL/GgWR0ChyEtWdVebdX2UKGgGaAloD0MICOQSR56hb0CUhpRSlGgVS+BoFkdAochicNH6M3V9lChoBmgJaA9DCJD3qpWJN3FAlIaUUpRoFUv4aBZHQKHIb+1jRUp1fZQoaAZoCWgPQwi1iv7QzOFOQJSGlFKUaBVLvWgWR0ChyHyon8badX2UKGgGaAloD0MIQlw5e2d5cUCUhpRSlGgVS99oFkdAociPDej2z3V9lChoBmgJaA9DCN14d2QsiG9AlIaUUpRoFUvVaBZHQKHIlsgMc6x1fZQoaAZoCWgPQwinr+drli9xQJSGlFKUaBVL2mgWR0ChyTOpCKJmdX2UKGgGaAloD0MIv0hoy7ndb0CUhpRSlGgVS/poFkdAocmmdd3Sr3V9lChoBmgJaA9DCFLuPscHjXJAlIaUUpRoFU0bAWgWR0ChybsSkCV9dX2UKGgGaAloD0MIIm3jTxRZckCUhpRSlGgVS+BoFkdAocnfc+JP7HV9lChoBmgJaA9DCAH76NSV2XBAlIaUUpRoFUv6aBZHQKHKFzhgmZ51fZQoaAZoCWgPQwh96lildOBuQJSGlFKUaBVL9WgWR0ChylbMHKOldX2UKGgGaAloD0MIv5gtWZVxbkCUhpRSlGgVS/doFkdAocpuvllsg3V9lChoBmgJaA9DCAOXx5oRGHFAlIaUUpRoFUvnaBZHQKHKcxVQyh11ZS4="
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
76
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
  },
78
+ "_n_updates": 616,
79
  "n_steps": 1024,
80
  "gamma": 0.999,
81
  "gae_lambda": 0.98,
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:c46608eabe1807ddfef8def94c7b5578296f1124d2b3818457674989a154c2e4
3
- size 84829
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:25676d85082afcdbd2c235356469e7b14f7fcfe217bcf9c19742c3a66af07822
3
+ size 84893
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:6780f26b5c0e8ba8739cb341c96039817413f563e7ec2b438622df8a4ecf0679
3
  size 43201
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aaa1be84d345e09eea757fbfb052f459bc1668ba0543df809c0299f9173a11d3
3
  size 43201
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:0aa3f33bc1055e0a9fe6677aba4867e7fae65207b9539f59a6160710b2047815
3
- size 201701
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d6430beaee5b19688461ac23055fe19c807c31935e2eddbf29fd886594a3d8f9
3
+ size 203224
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 263.551079967756, "std_reward": 24.36260648958934, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-05T20:56:20.621365"}
 
1
+ {"mean_reward": 273.94215720705233, "std_reward": 11.642419502272926, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-06T08:57:36.863635"}