Upload PPO LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +4 -4
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- replay.mp4 +2 -2
- results.json +1 -1
README.md
CHANGED
@@ -10,7 +10,7 @@ model-index:
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
-
value:
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
+
value: 263.55 +/- 24.36
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fddcbba3050>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fddcbba30e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fddcbba3170>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fddcbba3200>", "_build": "<function ActorCriticPolicy._build at 0x7fddcbba3290>", "forward": "<function ActorCriticPolicy.forward at 0x7fddcbba3320>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fddcbba33b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fddcbba3440>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fddcbba34d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fddcbba3560>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fddcbba35f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fddcbbf72a0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651782331.275867, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEM+2z4jGxE9/e1wvYRfl7t4pwQ+MOFvuwAAgD8AAIA/5s0nvVKov7ksmJY7/p20PFcpG7s7nTA8AACAPwAAgD8D8p0+z6JFvKYMoTu+/2O5stiKvZoVRTYAAIA/AACAPzYq2r68N4u9SnGWOlKv+zgkpB4+mCWzuQAAgD8AAIA/5pwiPuR84D5iBJs9R44gvn2BLb16aC08AAAAAAAAAAAAkBS9FNyvur/vhroCw8+1iPRdONeKmjkAAIA/AACAP8s4Bj8hdwo/DaYSPvT/PL5ukzY8CH9CPQAAAAAAAAAAM3wHvZZkND/g3Qi+IluWvr3T9r20kxO+AAAAAAAAAABd24A+7gDGPiYCHL3d93W+qgAIvnsXj7wAAAAAAAAAALLn1r67sLK8pKw5O9s7LDnv27M9prVaugAAgD8AAIA/m3Uqv+W0Qr5T//C73pCCuqOlgT5qzbw6AACAPwAAgD8atbA9UliyufKncTnywY83Dq8Pu3zbsLgAAIA/AACAP8AR5L2u9ZC6p7ZBOsPz5bU9IiS61qVfuQAAgD8AAIA/hk52PsPZGDvzk345fJWdNvls9Twy0ZC4AACAPwAAgD+t23w+LCWPPCc/EDs17xO3O5obPvrbGboAAIA/AACAP/ZeWL7S3Zg8vOg1O1wLn7nCpia++PhnugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVZBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIA8+9h0u+HcCUhpRSlIwBbJRL2owBdJRHQIJclkc0cfh1fZQoaAZoCWgPQwggYoOFk+JfQJSGlFKUaBVN6ANoFkdAgmA1Y6nzhHV9lChoBmgJaA9DCCZvgJlvHWFAlIaUUpRoFU3oA2gWR0CCZpWV/tpmdX2UKGgGaAloD0MI3A2itaIzQMCUhpRSlGgVS/toFkdAgmqhxo7FKnV9lChoBmgJaA9DCEFK7Npe/2NAlIaUUpRoFU3oA2gWR0CCbkyk9ECvdX2UKGgGaAloD0MI+3YSEf5FN8CUhpRSlGgVS+JoFkdAgnQrU9ZA6nV9lChoBmgJaA9DCB+/t+nP5FJAlIaUUpRoFU3oA2gWR0CCfjXmvGIbdX2UKGgGaAloD0MIls6HZ4k1YkCUhpRSlGgVTegDaBZHQIJ//Rw6ySp1fZQoaAZoCWgPQwhjl6jeGptbwJSGlFKUaBVL2mgWR0CCgB4VRDTjdX2UKGgGaAloD0MIYTjXMEPtWcCUhpRSlGgVTYwBaBZHQIKBxV+7UXp1fZQoaAZoCWgPQwgxX16Afcg/wJSGlFKUaBVLy2gWR0CCi6zBRAKOdX2UKGgGaAloD0MIQbrYtFKrWECUhpRSlGgVTegDaBZHQIKPmjwhGH51fZQoaAZoCWgPQwhx5eyd0XpxwJSGlFKUaBVNKwJoFkdAgpIrKV6eG3V9lChoBmgJaA9DCITZBBiWFyrAlIaUUpRoFUu/aBZHQIK6FfG+9J11fZQoaAZoCWgPQwhH6dK/JC1dwJSGlFKUaBVL2WgWR0CCvOmG/N7jdX2UKGgGaAloD0MIcw6eCU1aWkCUhpRSlGgVTegDaBZHQIK/ftlZowp1fZQoaAZoCWgPQwihoBSt3EMpQJSGlFKUaBVNBwFoFkdAgsB5WBBiTnV9lChoBmgJaA9DCBHGT+PedEBAlIaUUpRoFU3oA2gWR0CCwxLGJemfdX2UKGgGaAloD0MIyM9GrpvaMMCUhpRSlGgVS8loFkdAgsY+B6KLsXV9lChoBmgJaA9DCLq9pDFaizJAlIaUUpRoFUv2aBZHQILOjsOXmeV1fZQoaAZoCWgPQwhRpWYPtPtWQJSGlFKUaBVN6ANoFkdAgtcFzEJjUnV9lChoBmgJaA9DCJiIt86/dmBAlIaUUpRoFU3oA2gWR0CC14TlkpZwdX2UKGgGaAloD0MIXpz4akd5PcCUhpRSlGgVS+doFkdAgtxPMKTjenV9lChoBmgJaA9DCOf/VUeOmEvAlIaUUpRoFUvfaBZHQILes3fhuO11fZQoaAZoCWgPQwi77q1ITAQ1wJSGlFKUaBVL42gWR0CC55jHXEqEdX2UKGgGaAloD0MIhlRRvMp9VECUhpRSlGgVTegDaBZHQILrCxzJZGN1fZQoaAZoCWgPQwi6gm3Ek2ZVwJSGlFKUaBVL5GgWR0CC8NHxSYPYdX2UKGgGaAloD0MIXyaKkDrrYkCUhpRSlGgVTegDaBZHQILyNiDujRF1fZQoaAZoCWgPQwivWpnwS9ZhQJSGlFKUaBVN6ANoFkdAgvV48U21lXV9lChoBmgJaA9DCJSD2QQYljjAlIaUUpRoFUv0aBZHQIL3qUgSvkl1fZQoaAZoCWgPQwjElEiil2xgQJSGlFKUaBVN6ANoFkdAgv8OM2m52HV9lChoBmgJaA9DCPJgi90+sUFAlIaUUpRoFU3oA2gWR0CDAjGkN4JNdX2UKGgGaAloD0MID2CRXz++Q8CUhpRSlGgVS9poFkdAgwj/YJ3PiXV9lChoBmgJaA9DCL3Fw3sOdklAlIaUUpRoFU0XAWgWR0CDCcB0ZFXrdX2UKGgGaAloD0MIezL/6JvAQ0CUhpRSlGgVS/5oFkdAgxC+49X9znV9lChoBmgJaA9DCGe2K/TB3WFAlIaUUpRoFU3oA2gWR0CDFPzdUKiPdX2UKGgGaAloD0MIyECeXb7FPMCUhpRSlGgVS69oFkdAgyYCCaqjrXV9lChoBmgJaA9DCKa21EFejVRAlIaUUpRoFU3oA2gWR0CDJpFglWwNdX2UKGgGaAloD0MIY3yYvWwZW0CUhpRSlGgVTegDaBZHQINPMJ+lTFV1fZQoaAZoCWgPQwg0EqERbJlbQJSGlFKUaBVN6ANoFkdAg1InSv1UVHV9lChoBmgJaA9DCONQvwtbHmFAlIaUUpRoFU3oA2gWR0CDVLNZeRgadX2UKGgGaAloD0MIPSmTGloIZUCUhpRSlGgVTegDaBZHQINVkT6BRQ91fZQoaAZoCWgPQwhtcY3PZIM0wJSGlFKUaBVLtmgWR0CDXt2RJVbSdX2UKGgGaAloD0MIveMUHcktLsCUhpRSlGgVS81oFkdAg2VVTrE9+3V9lChoBmgJaA9DCGU1XU90nRxAlIaUUpRoFUuYaBZHQINlrCYTkAB1fZQoaAZoCWgPQwgVONkG7rw/QJSGlFKUaBVLzWgWR0CDaCAfdRBNdX2UKGgGaAloD0MIC+2cZoGFX0CUhpRSlGgVTegDaBZHQINsK+tbLU11fZQoaAZoCWgPQwgEG9e/659aQJSGlFKUaBVN6ANoFkdAg3Q+Eh7mdXV9lChoBmgJaA9DCIUi3c8p+kHAlIaUUpRoFUvDaBZHQIN1HMEA5rB1fZQoaAZoCWgPQwiRD3o2q3NhQJSGlFKUaBVN6ANoFkdAg31xArxy4nV9lChoBmgJaA9DCMoZijve8mRAlIaUUpRoFU3oA2gWR0CDhgTM7lq8dX2UKGgGaAloD0MI0QZgAyKmQECUhpRSlGgVTegDaBZHQIOOFOoHcDd1fZQoaAZoCWgPQwi+vAD76FZAQJSGlFKUaBVL4WgWR0CDj2dd3SrpdX2UKGgGaAloD0MIIHu9++N8VECUhpRSlGgVTegDaBZHQIOWEaAFxGV1fZQoaAZoCWgPQwjKTj+oi+FZQJSGlFKUaBVN6ANoFkdAg5l2YF7laXV9lChoBmgJaA9DCNmVlpF6j/C/lIaUUpRoFUvBaBZHQIOcU36yjYZ1fZQoaAZoCWgPQwgYITzaOLlbQJSGlFKUaBVN6ANoFkdAg6BMSTQmeHV9lChoBmgJaA9DCOf/VUeOrEZAlIaUUpRoFU3oA2gWR0CDoPg2Ifr9dX2UKGgGaAloD0MI8WPMXUuYEkCUhpRSlGgVS7ZoFkdAg6I6sIVuaXV9lChoBmgJaA9DCL8qFyr/7VNAlIaUUpRoFU3oA2gWR0CDqtEWqLjxdX2UKGgGaAloD0MIEDtT6LwGGcCUhpRSlGgVS7FoFkdAg7JKyGBWgnV9lChoBmgJaA9DCBmPUglPgWJAlIaUUpRoFU3oA2gWR0CDuXdRBNVSdX2UKGgGaAloD0MIPlqcMcx5RcCUhpRSlGgVS7NoFkdAg74DeTFERnV9lChoBmgJaA9DCJ4Hd2ftpllAlIaUUpRoFU3oA2gWR0CD53v6TGHYdX2UKGgGaAloD0MI1lQWhV03XsCUhpRSlGgVTZQBaBZHQIPrpjc2zfJ1fZQoaAZoCWgPQwhP6svSTh5UQJSGlFKUaBVN6ANoFkdAg/oG2kSElHV9lChoBmgJaA9DCHmRCfg1bWJAlIaUUpRoFU3oA2gWR0CD+mdat9x7dX2UKGgGaAloD0MIJo48EFmsSkCUhpRSlGgVTegDaBZHQIP838EV32V1fZQoaAZoCWgPQwifPZepSeBGQJSGlFKUaBVN6ANoFkdAhAEd/rjYI3V9lChoBmgJaA9DCP/QzJNr81ZAlIaUUpRoFU3oA2gWR0CECSyprDZUdX2UKGgGaAloD0MIJm4VxMB1YECUhpRSlGgVTegDaBZHQIQSw4jrzGx1fZQoaAZoCWgPQwgPJsXHJ7tjwJSGlFKUaBVNTwFoFkdAhBMzi83+/HV9lChoBmgJaA9DCM8xIHu9f1JAlIaUUpRoFU3oA2gWR0CEJZZxrBTGdX2UKGgGaAloD0MIpbxWQnfoUUCUhpRSlGgVTegDaBZHQIQtsx/NJOF1fZQoaAZoCWgPQwg6rkZ2pRVXQJSGlFKUaBVN6ANoFkdAhDITpxFRYXV9lChoBmgJaA9DCBlZMsfyYl9AlIaUUpRoFU3oA2gWR0CEO84iHIp6dX2UKGgGaAloD0MIWrqCbcSJWECUhpRSlGgVTegDaBZHQIQ9ln003wV1fZQoaAZoCWgPQwhLdQEvMyZIwJSGlFKUaBVL/mgWR0CEUMfChvitdX2UKGgGaAloD0MIMgG/RpJwXECUhpRSlGgVTegDaBZHQIRTJ2OhkAh1fZQoaAZoCWgPQwg2PSgoRfJYQJSGlFKUaBVN6ANoFkdAhFxIG6f8M3V9lChoBmgJaA9DCMLexJCceVBAlIaUUpRoFU3oA2gWR0CEYiLUCq6wdX2UKGgGaAloD0MIuwopP6kwWkCUhpRSlGgVTegDaBZHQISMf+jua4N1fZQoaAZoCWgPQwgT7pV5q01SQJSGlFKUaBVN6ANoFkdAhKPHzg/C7HV9lChoBmgJaA9DCGvVrglpQlhAlIaUUpRoFU3oA2gWR0CEpDuMuOCHdX2UKGgGaAloD0MIq1yo/GvxYkCUhpRSlGgVTegDaBZHQISnOZiNKiB1fZQoaAZoCWgPQwgJOIQqNflVQJSGlFKUaBVN6ANoFkdAhKvp2dNFjXV9lChoBmgJaA9DCIkl5e5zHCXAlIaUUpRoFU0uAWgWR0CEsLhF3IMjdX2UKGgGaAloD0MIC7YRT/byYECUhpRSlGgVTegDaBZHQIS0Q4Qz1sd1fZQoaAZoCWgPQwj1DrdDw4IPQJSGlFKUaBVNTgFoFkdAhLnOObRWtHV9lChoBmgJaA9DCMe7I2M1omNAlIaUUpRoFU3oA2gWR0CEvhFyaNModX2UKGgGaAloD0MIhgSMLm/GXUCUhpRSlGgVTegDaBZHQIS+hgZ0jkd1fZQoaAZoCWgPQwiw/s9hvnBEQJSGlFKUaBVL1GgWR0CEwJ2wFC9idX2UKGgGaAloD0MIeHqlLEOcXkCUhpRSlGgVTegDaBZHQITOVOKwY+B1fZQoaAZoCWgPQwgBa9WuCdNiQJSGlFKUaBVN6ANoFkdAhNlg9/z8QHV9lChoBmgJaA9DCNF2TN2VaVZAlIaUUpRoFU3oA2gWR0CE4muFHrhSdX2UKGgGaAloD0MIoP8evPZrYUCUhpRSlGgVTegDaBZHQITkIumJm/Z1fZQoaAZoCWgPQwjWj03yI944QJSGlFKUaBVN6ANoFkdAhPenwPRRdnV9lChoBmgJaA9DCEhTPZl/y2BAlIaUUpRoFU3oA2gWR0CE+d7JGOMmdX2UKGgGaAloD0MI04TtJ2M0KECUhpRSlGgVTQUBaBZHQIT8nFJg9eR1fZQoaAZoCWgPQwhCXDl7Z7xkQJSGlFKUaBVN6ANoFkdAhQKNxMnJDHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fddcbba3050>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fddcbba30e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fddcbba3170>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fddcbba3200>", "_build": "<function ActorCriticPolicy._build at 0x7fddcbba3290>", "forward": "<function ActorCriticPolicy.forward at 0x7fddcbba3320>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fddcbba33b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fddcbba3440>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fddcbba34d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fddcbba3560>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fddcbba35f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fddcbbf72a0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651783505.1116066, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAbkM75HjlU/jTk0u+m4QL54IEq97ysRPAAAAAAAAAAAzWCEu8Qisj+NEP69lVCVvnuhlzu5sAY8AAAAAAAAAABmZR094WrhOQx2KbltRVa1o+iHO1WPTzgAAIA/AACAP61YDT6kfJM+tm/JvAXkkb4UmvS89drMPQAAAAAAAAAAze7JvXvqoLoayX85HA1wNFGclLoeUZO4AACAPwAAgD9mTlm7XPsHuuw+RzpVnDo15S6IOrK5brkAAIA/AACAPxNgRr5CdpA/7ssTvqprpL685DK+ZBmQPQAAAAAAAAAAzVq2Pg2obj8hXYc+vAt5vgeRjT76xRc8AAAAAAAAAACmwKA9cW0AuS7587riroi2SzpJOxTVEToAAIA/AACAP5pH0jx7ToK6f7qguotXlbVpwsE6/JW7OQAAgD8AAIA/s+6yPSmkb7q9NmS6Oa+JNVa2hzurNo05AACAPwAAgD9mvk47j1p/ulDP5zqEkuI1l8gMu6ivBroAAIA/AACAP/N/aj5xcC88/erZNf6c8TPwcMY9EWkZtQAAgD8AAIA/hiV+Pk8mKD9dui6+oq1hvpYMIr3+Gpq8AAAAAAAAAAD6wRy+AfwEPiyfij3Fr16+whQDvQMQYb0AAAAAAAAAALN7hb2uiai6VoKTOj7pijUIkKM6eGGpuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMImDEFa5xoZECUhpRSlIwBbJRN6AOMAXSUR0Cd+s7ZFocrdX2UKGgGaAloD0MIQ3HHm3zgYECUhpRSlGgVTegDaBZHQJ3/yL876pJ1fZQoaAZoCWgPQwj5adyb321hQJSGlFKUaBVN6ANoFkdAngCb4vexfXV9lChoBmgJaA9DCA1VMZV+v2VAlIaUUpRoFU3oA2gWR0CeAk1DBuXNdX2UKGgGaAloD0MIH7x2acOtXUCUhpRSlGgVTegDaBZHQJ4CeSzPa+N1fZQoaAZoCWgPQwiDv1/MlgpmQJSGlFKUaBVN6ANoFkdAngPq/RE4N3V9lChoBmgJaA9DCM2VQbXBHWRAlIaUUpRoFU3oA2gWR0CeBw4rjHXFdX2UKGgGaAloD0MIXmkZqfdVXkCUhpRSlGgVTegDaBZHQJ4OrM4cWCV1fZQoaAZoCWgPQwi7fyxEh7ZdQJSGlFKUaBVN6ANoFkdAnheK1PWQOnV9lChoBmgJaA9DCMy0/SsrbFxAlIaUUpRoFU3oA2gWR0CeMJjgydnTdX2UKGgGaAloD0MIb4Jvmj5Db0CUhpRSlGgVTdEDaBZHQJ4zkQvpQk51fZQoaAZoCWgPQwg5ud+hqJBhQJSGlFKUaBVN6ANoFkdAnje1G9YfXHV9lChoBmgJaA9DCOavkLkyV2BAlIaUUpRoFU3oA2gWR0CeOTpudf9hdX2UKGgGaAloD0MIsfm4NlSoOkCUhpRSlGgVTSMBaBZHQJ49dzRx95R1fZQoaAZoCWgPQwglzLT9K5ptQJSGlFKUaBVNbwJoFkdAnkJnYcvM83V9lChoBmgJaA9DCI3SpX/JB2dAlIaUUpRoFU3oA2gWR0CeQnWw/xDtdX2UKGgGaAloD0MINGWnH9TGY0CUhpRSlGgVTegDaBZHQJ5I+5RTCLx1fZQoaAZoCWgPQwg3NdB8zjdbQJSGlFKUaBVN6ANoFkdAnksqaG5+Y3V9lChoBmgJaA9DCPVKWYY4LlpAlIaUUpRoFU3oA2gWR0CeTJr1uivgdX2UKGgGaAloD0MIar+1EyW2Y0CUhpRSlGgVTegDaBZHQJ5RT5M10kp1fZQoaAZoCWgPQwjJkGPrGaFeQJSGlFKUaBVN6ANoFkdAnlIpha1Ti3V9lChoBmgJaA9DCOse2Vw1Q2NAlIaUUpRoFU3oA2gWR0CeU8AVwgkkdX2UKGgGaAloD0MIQx1WuOWCZUCUhpRSlGgVTegDaBZHQJ5T7wI+nqF1fZQoaAZoCWgPQwjYDHBBNhJjQJSGlFKUaBVN6ANoFkdAnlV4+OfdynV9lChoBmgJaA9DCF5MM93rykNAlIaUUpRoFU1CAWgWR0CeX9Dl5nlGdX2UKGgGaAloD0MI9fOmIhXgXUCUhpRSlGgVTegDaBZHQJ5gjIgeRxN1fZQoaAZoCWgPQwjiBnx+2CpxQJSGlFKUaBVNYQFoFkdAnml6FqSHM3V9lChoBmgJaA9DCFaeQNipSGNAlIaUUpRoFU3oA2gWR0CegO7EHdGidX2UKGgGaAloD0MIiqvKvitRXUCUhpRSlGgVTegDaBZHQJ6D6i8Fpwl1fZQoaAZoCWgPQwgUBmUazWdmQJSGlFKUaBVN6ANoFkdAnofyzLOiWXV9lChoBmgJaA9DCAgGED4UGWJAlIaUUpRoFU3oA2gWR0CeiVPhhpg1dX2UKGgGaAloD0MIexaE8r6RZ0CUhpRSlGgVTegDaBZHQJ6Nbch1Tzd1fZQoaAZoCWgPQwgfoWZIlXBkQJSGlFKUaBVN6ANoFkdAnpJhj8UEgXV9lChoBmgJaA9DCOs6VFMSimNAlIaUUpRoFU3oA2gWR0CeknD5TIeYdX2UKGgGaAloD0MIodgKmhY9ZUCUhpRSlGgVTegDaBZHQJ6ZOhAWznl1fZQoaAZoCWgPQwgqO/2gLuBeQJSGlFKUaBVN6ANoFkdAnpuVspG4JHV9lChoBmgJaA9DCHo2qz5XmFxAlIaUUpRoFU3oA2gWR0Ceoha/h2nsdX2UKGgGaAloD0MIYFrUJ7nLY0CUhpRSlGgVTegDaBZHQJ6i+c2BJ7N1fZQoaAZoCWgPQwhSf73CgtdhQJSGlFKUaBVN6ANoFkdAnqTAPEsJ6nV9lChoBmgJaA9DCP6ZQXxg+15AlIaUUpRoFU3oA2gWR0CepnwBHTZydX2UKGgGaAloD0MIrBqEud2mb0CUhpRSlGgVTYQCaBZHQJ6pT3rUsnR1fZQoaAZoCWgPQwiIK2fvjBJhQJSGlFKUaBVN6ANoFkdAnrCykCV8kXV9lChoBmgJaA9DCI2bGmg+FV5AlIaUUpRoFU3oA2gWR0CesXL/0dzXdX2UKGgGaAloD0MI6pPcYRMqX0CUhpRSlGgVTegDaBZHQJ66L/1g6U91fZQoaAZoCWgPQwjCaixhLQhyQJSGlFKUaBVNrwJoFkdAns7rUsnRcHV9lChoBmgJaA9DCKdB0TyA7mJAlIaUUpRoFU3oA2gWR0Ce1E6AvtdBdX2UKGgGaAloD0MIqdpugm/FZUCUhpRSlGgVTegDaBZHQJ7YNpKzzEt1fZQoaAZoCWgPQwiHFAMkms1iQJSGlFKUaBVN6ANoFkdAntmoYNy5qnV9lChoBmgJaA9DCO4iTFEuLm9AlIaUUpRoFU3xAmgWR0Ce3HRWcSXddX2UKGgGaAloD0MIj41AvK4RZkCUhpRSlGgVTegDaBZHQJ7dolqrR0F1fZQoaAZoCWgPQwghc2VQbdleQJSGlFKUaBVN6ANoFkdAnuJBhMJyAHV9lChoBmgJaA9DCIFfI0kQsG1AlIaUUpRoFU3jAmgWR0Ce6JPfsNUgdX2UKGgGaAloD0MI9utOdx5UY0CUhpRSlGgVTegDaBZHQJ7o2jqOcUd1fZQoaAZoCWgPQwgktrsHaIliQJSGlFKUaBVN6ANoFkdAnvFOZXuE3HV9lChoBmgJaA9DCMpOP6iLamBAlIaUUpRoFU3oA2gWR0Ce8jilBQendX2UKGgGaAloD0MIRrWIKCYsYECUhpRSlGgVTegDaBZHQJ7z/edkJ8h1fZQoaAZoCWgPQwggelImtRdhQJSGlFKUaBVN6ANoFkdAnvW7iZOSGXV9lChoBmgJaA9DCO3T8ZgB6W5AlIaUUpRoFU15A2gWR0Ce+fpBomG/dX2UKGgGaAloD0MIQRAgQ8dOXkCUhpRSlGgVTegDaBZHQJ8ACXrt3Oh1fZQoaAZoCWgPQwgZjuczIPlnQJSGlFKUaBVN6ANoFkdAnwkeI68xsXV9lChoBmgJaA9DCPvNxHThInBAlIaUUpRoFU1AAmgWR0CfC0Q5WBBidX2UKGgGaAloD0MIniRdM3mDYUCUhpRSlGgVTegDaBZHQJ8LjFdcB2h1fZQoaAZoCWgPQwjK3lLOFyVgQJSGlFKUaBVN6ANoFkdAnyH9iUgSvnV9lChoBmgJaA9DCOCGGK/5PmFAlIaUUpRoFU3oA2gWR0CfJXmygPEsdX2UKGgGaAloD0MI58jKL4P6ZUCUhpRSlGgVTegDaBZHQJ8m0vCdjG11fZQoaAZoCWgPQwgdqinJOqRgQJSGlFKUaBVN6ANoFkdAnyl77oB7u3V9lChoBmgJaA9DCMqmXOHdzmJAlIaUUpRoFU3oA2gWR0CfKnsN2C/XdX2UKGgGaAloD0MIZcQFoNHncECUhpRSlGgVTcICaBZHQJ8sOEZiuuB1fZQoaAZoCWgPQwgaprbUwXpjQJSGlFKUaBVN6ANoFkdAny7tB0IToXV9lChoBmgJaA9DCFzHuOLiM2JAlIaUUpRoFU3oA2gWR0CfNQOI68xsdX2UKGgGaAloD0MIBrggWxawcUCUhpRSlGgVTTADaBZHQJ86/GtITXd1fZQoaAZoCWgPQwh1c/G3Pb5rQJSGlFKUaBVNoANoFkdAnz1X0kGA1HV9lChoBmgJaA9DCMbgYdq3wmNAlIaUUpRoFU3oA2gWR0CfPjNS619fdX2UKGgGaAloD0MIC2MLQY62Y0CUhpRSlGgVTegDaBZHQJ8/2D9Oymh1fZQoaAZoCWgPQwgyqgzj7m5vQJSGlFKUaBVNCQNoFkdAn0ez8UEgXHV9lChoBmgJaA9DCOdWCKuxo2RAlIaUUpRoFU3oA2gWR0CfS9jgydnTdX2UKGgGaAloD0MIexaE8j5YZ0CUhpRSlGgVTegDaBZHQJ9YA29+PR11fZQoaAZoCWgPQwiskV1pGYJiQJSGlFKUaBVN6ANoFkdAn1hZIlMRH3V9lChoBmgJaA9DCCI4LuMmD2NAlIaUUpRoFU3oA2gWR0Cfb5NH6MzedX2UKGgGaAloD0MIEMtmDslNYkCUhpRSlGgVTegDaBZHQJ9zFZX+2mZ1fZQoaAZoCWgPQwgSh2wgXa1kQJSGlFKUaBVN6ANoFkdAn3R0wJw84nV9lChoBmgJaA9DCMDo8uZw32JAlIaUUpRoFU3oA2gWR0CfdydDIBBBdX2UKGgGaAloD0MIWWq93+hUY0CUhpRSlGgVTegDaBZHQJ94Pzwtrbh1fZQoaAZoCWgPQwj7rDJTWu9fQJSGlFKUaBVN6ANoFkdAn3oGIKtxMnV9lChoBmgJaA9DCFyv6UFBjF5AlIaUUpRoFU3oA2gWR0CffHePaL4vdX2UKGgGaAloD0MIAeDYs+c7YkCUhpRSlGgVTegDaBZHQJ+Cj8rI5o51fZQoaAZoCWgPQwgmUprN40ZfQJSGlFKUaBVN6ANoFkdAn4g9F8XvY3V9lChoBmgJaA9DCIEgQIaOW2JAlIaUUpRoFU3oA2gWR0CfiqlANXo1dX2UKGgGaAloD0MI/tXjvlVGZkCUhpRSlGgVTegDaBZHQJ+LiZF5Oah1fZQoaAZoCWgPQwjRWPs7WxxjQJSGlFKUaBVN6ANoFkdAn41QXyiEhHV9lChoBmgJaA9DCOhmf6BceG5AlIaUUpRoFU3HAmgWR0Cfk+7yxzJZdX2UKGgGaAloD0MIp1oLs9A7cECUhpRSlGgVTaUBaBZHQJ+VTJNj9XN1fZQoaAZoCWgPQwggfZOmQV5fQJSGlFKUaBVN6ANoFkdAn5VO63AmA3V9lChoBmgJaA9DCC2Xjc7542RAlIaUUpRoFU3oA2gWR0CfmOA3DNyHdX2UKGgGaAloD0MIfqmfN5V1akCUhpRSlGgVTaQCaBZHQJ+avvG6wt91fZQoaAZoCWgPQwgRixh2mPFtQJSGlFKUaBVNjwFoFkdAn59LYbsF+3V9lChoBmgJaA9DCAx2w7bFtWtAlIaUUpRoFU3ZAmgWR0Cfoa64lQdkdX2UKGgGaAloD0MIlG3gDtQtYECUhpRSlGgVTegDaBZHQJ+jdjVhCt11fZQoaAZoCWgPQwjRdHYyOD9wQJSGlFKUaBVNFQNoFkdAn6PLaufVZ3V9lChoBmgJaA9DCI6s/DIY+GxAlIaUUpRoFU3oAWgWR0CfpwU9ZA6ddWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:89d7b1f4635688a0261545502d3d65df393f6eace99547e1a16d8609b0d44373
|
3 |
+
size 144048
|
ppo-LunarLander-v2/data
CHANGED
@@ -47,7 +47,7 @@
|
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
-
"start_time":
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
@@ -56,7 +56,7 @@
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
-
":serialized:": "
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -69,13 +69,13 @@
|
|
69 |
"_current_progress_remaining": -0.015808000000000044,
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
-
":serialized:": "
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
-
"_n_updates":
|
79 |
"n_steps": 1024,
|
80 |
"gamma": 0.999,
|
81 |
"gae_lambda": 0.98,
|
|
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
+
"start_time": 1651783505.1116066,
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAbkM75HjlU/jTk0u+m4QL54IEq97ysRPAAAAAAAAAAAzWCEu8Qisj+NEP69lVCVvnuhlzu5sAY8AAAAAAAAAABmZR094WrhOQx2KbltRVa1o+iHO1WPTzgAAIA/AACAP61YDT6kfJM+tm/JvAXkkb4UmvS89drMPQAAAAAAAAAAze7JvXvqoLoayX85HA1wNFGclLoeUZO4AACAPwAAgD9mTlm7XPsHuuw+RzpVnDo15S6IOrK5brkAAIA/AACAPxNgRr5CdpA/7ssTvqprpL685DK+ZBmQPQAAAAAAAAAAzVq2Pg2obj8hXYc+vAt5vgeRjT76xRc8AAAAAAAAAACmwKA9cW0AuS7587riroi2SzpJOxTVEToAAIA/AACAP5pH0jx7ToK6f7qguotXlbVpwsE6/JW7OQAAgD8AAIA/s+6yPSmkb7q9NmS6Oa+JNVa2hzurNo05AACAPwAAgD9mvk47j1p/ulDP5zqEkuI1l8gMu6ivBroAAIA/AACAP/N/aj5xcC88/erZNf6c8TPwcMY9EWkZtQAAgD8AAIA/hiV+Pk8mKD9dui6+oq1hvpYMIr3+Gpq8AAAAAAAAAAD6wRy+AfwEPiyfij3Fr16+whQDvQMQYb0AAAAAAAAAALN7hb2uiai6VoKTOj7pijUIkKM6eGGpuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
69 |
"_current_progress_remaining": -0.015808000000000044,
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMImDEFa5xoZECUhpRSlIwBbJRN6AOMAXSUR0Cd+s7ZFocrdX2UKGgGaAloD0MIQ3HHm3zgYECUhpRSlGgVTegDaBZHQJ3/yL876pJ1fZQoaAZoCWgPQwj5adyb321hQJSGlFKUaBVN6ANoFkdAngCb4vexfXV9lChoBmgJaA9DCA1VMZV+v2VAlIaUUpRoFU3oA2gWR0CeAk1DBuXNdX2UKGgGaAloD0MIH7x2acOtXUCUhpRSlGgVTegDaBZHQJ4CeSzPa+N1fZQoaAZoCWgPQwiDv1/MlgpmQJSGlFKUaBVN6ANoFkdAngPq/RE4N3V9lChoBmgJaA9DCM2VQbXBHWRAlIaUUpRoFU3oA2gWR0CeBw4rjHXFdX2UKGgGaAloD0MIXmkZqfdVXkCUhpRSlGgVTegDaBZHQJ4OrM4cWCV1fZQoaAZoCWgPQwi7fyxEh7ZdQJSGlFKUaBVN6ANoFkdAnheK1PWQOnV9lChoBmgJaA9DCMy0/SsrbFxAlIaUUpRoFU3oA2gWR0CeMJjgydnTdX2UKGgGaAloD0MIb4Jvmj5Db0CUhpRSlGgVTdEDaBZHQJ4zkQvpQk51fZQoaAZoCWgPQwg5ud+hqJBhQJSGlFKUaBVN6ANoFkdAnje1G9YfXHV9lChoBmgJaA9DCOavkLkyV2BAlIaUUpRoFU3oA2gWR0CeOTpudf9hdX2UKGgGaAloD0MIsfm4NlSoOkCUhpRSlGgVTSMBaBZHQJ49dzRx95R1fZQoaAZoCWgPQwglzLT9K5ptQJSGlFKUaBVNbwJoFkdAnkJnYcvM83V9lChoBmgJaA9DCI3SpX/JB2dAlIaUUpRoFU3oA2gWR0CeQnWw/xDtdX2UKGgGaAloD0MINGWnH9TGY0CUhpRSlGgVTegDaBZHQJ5I+5RTCLx1fZQoaAZoCWgPQwg3NdB8zjdbQJSGlFKUaBVN6ANoFkdAnksqaG5+Y3V9lChoBmgJaA9DCPVKWYY4LlpAlIaUUpRoFU3oA2gWR0CeTJr1uivgdX2UKGgGaAloD0MIar+1EyW2Y0CUhpRSlGgVTegDaBZHQJ5RT5M10kp1fZQoaAZoCWgPQwjJkGPrGaFeQJSGlFKUaBVN6ANoFkdAnlIpha1Ti3V9lChoBmgJaA9DCOse2Vw1Q2NAlIaUUpRoFU3oA2gWR0CeU8AVwgkkdX2UKGgGaAloD0MIQx1WuOWCZUCUhpRSlGgVTegDaBZHQJ5T7wI+nqF1fZQoaAZoCWgPQwjYDHBBNhJjQJSGlFKUaBVN6ANoFkdAnlV4+OfdynV9lChoBmgJaA9DCF5MM93rykNAlIaUUpRoFU1CAWgWR0CeX9Dl5nlGdX2UKGgGaAloD0MI9fOmIhXgXUCUhpRSlGgVTegDaBZHQJ5gjIgeRxN1fZQoaAZoCWgPQwjiBnx+2CpxQJSGlFKUaBVNYQFoFkdAnml6FqSHM3V9lChoBmgJaA9DCFaeQNipSGNAlIaUUpRoFU3oA2gWR0CegO7EHdGidX2UKGgGaAloD0MIiqvKvitRXUCUhpRSlGgVTegDaBZHQJ6D6i8Fpwl1fZQoaAZoCWgPQwgUBmUazWdmQJSGlFKUaBVN6ANoFkdAnofyzLOiWXV9lChoBmgJaA9DCAgGED4UGWJAlIaUUpRoFU3oA2gWR0CeiVPhhpg1dX2UKGgGaAloD0MIexaE8r6RZ0CUhpRSlGgVTegDaBZHQJ6Nbch1Tzd1fZQoaAZoCWgPQwgfoWZIlXBkQJSGlFKUaBVN6ANoFkdAnpJhj8UEgXV9lChoBmgJaA9DCOs6VFMSimNAlIaUUpRoFU3oA2gWR0CeknD5TIeYdX2UKGgGaAloD0MIodgKmhY9ZUCUhpRSlGgVTegDaBZHQJ6ZOhAWznl1fZQoaAZoCWgPQwgqO/2gLuBeQJSGlFKUaBVN6ANoFkdAnpuVspG4JHV9lChoBmgJaA9DCHo2qz5XmFxAlIaUUpRoFU3oA2gWR0Ceoha/h2nsdX2UKGgGaAloD0MIYFrUJ7nLY0CUhpRSlGgVTegDaBZHQJ6i+c2BJ7N1fZQoaAZoCWgPQwhSf73CgtdhQJSGlFKUaBVN6ANoFkdAnqTAPEsJ6nV9lChoBmgJaA9DCP6ZQXxg+15AlIaUUpRoFU3oA2gWR0CepnwBHTZydX2UKGgGaAloD0MIrBqEud2mb0CUhpRSlGgVTYQCaBZHQJ6pT3rUsnR1fZQoaAZoCWgPQwiIK2fvjBJhQJSGlFKUaBVN6ANoFkdAnrCykCV8kXV9lChoBmgJaA9DCI2bGmg+FV5AlIaUUpRoFU3oA2gWR0CesXL/0dzXdX2UKGgGaAloD0MI6pPcYRMqX0CUhpRSlGgVTegDaBZHQJ66L/1g6U91fZQoaAZoCWgPQwjCaixhLQhyQJSGlFKUaBVNrwJoFkdAns7rUsnRcHV9lChoBmgJaA9DCKdB0TyA7mJAlIaUUpRoFU3oA2gWR0Ce1E6AvtdBdX2UKGgGaAloD0MIqdpugm/FZUCUhpRSlGgVTegDaBZHQJ7YNpKzzEt1fZQoaAZoCWgPQwiHFAMkms1iQJSGlFKUaBVN6ANoFkdAntmoYNy5qnV9lChoBmgJaA9DCO4iTFEuLm9AlIaUUpRoFU3xAmgWR0Ce3HRWcSXddX2UKGgGaAloD0MIj41AvK4RZkCUhpRSlGgVTegDaBZHQJ7dolqrR0F1fZQoaAZoCWgPQwghc2VQbdleQJSGlFKUaBVN6ANoFkdAnuJBhMJyAHV9lChoBmgJaA9DCIFfI0kQsG1AlIaUUpRoFU3jAmgWR0Ce6JPfsNUgdX2UKGgGaAloD0MI9utOdx5UY0CUhpRSlGgVTegDaBZHQJ7o2jqOcUd1fZQoaAZoCWgPQwgktrsHaIliQJSGlFKUaBVN6ANoFkdAnvFOZXuE3HV9lChoBmgJaA9DCMpOP6iLamBAlIaUUpRoFU3oA2gWR0Ce8jilBQendX2UKGgGaAloD0MIRrWIKCYsYECUhpRSlGgVTegDaBZHQJ7z/edkJ8h1fZQoaAZoCWgPQwggelImtRdhQJSGlFKUaBVN6ANoFkdAnvW7iZOSGXV9lChoBmgJaA9DCO3T8ZgB6W5AlIaUUpRoFU15A2gWR0Ce+fpBomG/dX2UKGgGaAloD0MIQRAgQ8dOXkCUhpRSlGgVTegDaBZHQJ8ACXrt3Oh1fZQoaAZoCWgPQwgZjuczIPlnQJSGlFKUaBVN6ANoFkdAnwkeI68xsXV9lChoBmgJaA9DCPvNxHThInBAlIaUUpRoFU1AAmgWR0CfC0Q5WBBidX2UKGgGaAloD0MIniRdM3mDYUCUhpRSlGgVTegDaBZHQJ8LjFdcB2h1fZQoaAZoCWgPQwjK3lLOFyVgQJSGlFKUaBVN6ANoFkdAnyH9iUgSvnV9lChoBmgJaA9DCOCGGK/5PmFAlIaUUpRoFU3oA2gWR0CfJXmygPEsdX2UKGgGaAloD0MI58jKL4P6ZUCUhpRSlGgVTegDaBZHQJ8m0vCdjG11fZQoaAZoCWgPQwgdqinJOqRgQJSGlFKUaBVN6ANoFkdAnyl77oB7u3V9lChoBmgJaA9DCMqmXOHdzmJAlIaUUpRoFU3oA2gWR0CfKnsN2C/XdX2UKGgGaAloD0MIZcQFoNHncECUhpRSlGgVTcICaBZHQJ8sOEZiuuB1fZQoaAZoCWgPQwgaprbUwXpjQJSGlFKUaBVN6ANoFkdAny7tB0IToXV9lChoBmgJaA9DCFzHuOLiM2JAlIaUUpRoFU3oA2gWR0CfNQOI68xsdX2UKGgGaAloD0MIBrggWxawcUCUhpRSlGgVTTADaBZHQJ86/GtITXd1fZQoaAZoCWgPQwh1c/G3Pb5rQJSGlFKUaBVNoANoFkdAnz1X0kGA1HV9lChoBmgJaA9DCMbgYdq3wmNAlIaUUpRoFU3oA2gWR0CfPjNS619fdX2UKGgGaAloD0MIC2MLQY62Y0CUhpRSlGgVTegDaBZHQJ8/2D9Oymh1fZQoaAZoCWgPQwgyqgzj7m5vQJSGlFKUaBVNCQNoFkdAn0ez8UEgXHV9lChoBmgJaA9DCOdWCKuxo2RAlIaUUpRoFU3oA2gWR0CfS9jgydnTdX2UKGgGaAloD0MIexaE8j5YZ0CUhpRSlGgVTegDaBZHQJ9YA29+PR11fZQoaAZoCWgPQwiskV1pGYJiQJSGlFKUaBVN6ANoFkdAn1hZIlMRH3V9lChoBmgJaA9DCCI4LuMmD2NAlIaUUpRoFU3oA2gWR0Cfb5NH6MzedX2UKGgGaAloD0MIEMtmDslNYkCUhpRSlGgVTegDaBZHQJ9zFZX+2mZ1fZQoaAZoCWgPQwgSh2wgXa1kQJSGlFKUaBVN6ANoFkdAn3R0wJw84nV9lChoBmgJaA9DCMDo8uZw32JAlIaUUpRoFU3oA2gWR0CfdydDIBBBdX2UKGgGaAloD0MIWWq93+hUY0CUhpRSlGgVTegDaBZHQJ94Pzwtrbh1fZQoaAZoCWgPQwj7rDJTWu9fQJSGlFKUaBVN6ANoFkdAn3oGIKtxMnV9lChoBmgJaA9DCFyv6UFBjF5AlIaUUpRoFU3oA2gWR0CffHePaL4vdX2UKGgGaAloD0MIAeDYs+c7YkCUhpRSlGgVTegDaBZHQJ+Cj8rI5o51fZQoaAZoCWgPQwgmUprN40ZfQJSGlFKUaBVN6ANoFkdAn4g9F8XvY3V9lChoBmgJaA9DCIEgQIaOW2JAlIaUUpRoFU3oA2gWR0CfiqlANXo1dX2UKGgGaAloD0MI/tXjvlVGZkCUhpRSlGgVTegDaBZHQJ+LiZF5Oah1fZQoaAZoCWgPQwjRWPs7WxxjQJSGlFKUaBVN6ANoFkdAn41QXyiEhHV9lChoBmgJaA9DCOhmf6BceG5AlIaUUpRoFU3HAmgWR0Cfk+7yxzJZdX2UKGgGaAloD0MIp1oLs9A7cECUhpRSlGgVTaUBaBZHQJ+VTJNj9XN1fZQoaAZoCWgPQwggfZOmQV5fQJSGlFKUaBVN6ANoFkdAn5VO63AmA3V9lChoBmgJaA9DCC2Xjc7542RAlIaUUpRoFU3oA2gWR0CfmOA3DNyHdX2UKGgGaAloD0MIfqmfN5V1akCUhpRSlGgVTaQCaBZHQJ+avvG6wt91fZQoaAZoCWgPQwgRixh2mPFtQJSGlFKUaBVNjwFoFkdAn59LYbsF+3V9lChoBmgJaA9DCAx2w7bFtWtAlIaUUpRoFU3ZAmgWR0Cfoa64lQdkdX2UKGgGaAloD0MIlG3gDtQtYECUhpRSlGgVTegDaBZHQJ+jdjVhCt11fZQoaAZoCWgPQwjRdHYyOD9wQJSGlFKUaBVNFQNoFkdAn6PLaufVZ3V9lChoBmgJaA9DCI6s/DIY+GxAlIaUUpRoFU3oAWgWR0CfpwU9ZA6ddWUu"
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
+
"_n_updates": 248,
|
79 |
"n_steps": 1024,
|
80 |
"gamma": 0.999,
|
81 |
"gae_lambda": 0.98,
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 84829
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c46608eabe1807ddfef8def94c7b5578296f1124d2b3818457674989a154c2e4
|
3 |
size 84829
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43201
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6780f26b5c0e8ba8739cb341c96039817413f563e7ec2b438622df8a4ecf0679
|
3 |
size 43201
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0aa3f33bc1055e0a9fe6677aba4867e7fae65207b9539f59a6160710b2047815
|
3 |
+
size 201701
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 263.551079967756, "std_reward": 24.36260648958934, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-05T20:56:20.621365"}
|