BGE base bible test

This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5 on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-base-en-v1.5
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:
    • json
  • Language: fr
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("Steve77/bge-base-bible-retrieval")
# Run inference
sentences = [
    "Quand les Lévites devaient-ils se présenter pour louer et célébrer l'Éternel?",
    'Chaque matin et chaque soir.',
    "Cinq mille talents d'or et dix mille talents d'argent ont été donnés.",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric dim_768 dim_512 dim_256 dim_128 dim_64
cosine_accuracy@1 0.1336 0.1277 0.1249 0.1094 0.0894
cosine_accuracy@3 0.188 0.1855 0.1746 0.1569 0.1318
cosine_accuracy@5 0.2139 0.2057 0.1974 0.1785 0.1501
cosine_accuracy@10 0.251 0.2421 0.2327 0.2084 0.1769
cosine_precision@1 0.1336 0.1277 0.1249 0.1094 0.0894
cosine_precision@3 0.0627 0.0618 0.0582 0.0523 0.0439
cosine_precision@5 0.0428 0.0411 0.0395 0.0357 0.03
cosine_precision@10 0.0251 0.0242 0.0233 0.0208 0.0177
cosine_recall@1 0.1336 0.1277 0.1249 0.1094 0.0894
cosine_recall@3 0.188 0.1855 0.1746 0.1569 0.1318
cosine_recall@5 0.2139 0.2057 0.1974 0.1785 0.1501
cosine_recall@10 0.251 0.2421 0.2327 0.2084 0.1769
cosine_ndcg@10 0.1882 0.1815 0.1744 0.1557 0.1303
cosine_mrr@10 0.1686 0.1626 0.1563 0.1392 0.1158
cosine_map@100 0.174 0.168 0.1614 0.1441 0.1207

Training Details

Training Dataset

json

  • Dataset: json
  • Size: 47,560 training samples
  • Columns: anchor and positive
  • Approximate statistics based on the first 1000 samples:
    anchor positive
    type string string
    details
    • min: 8 tokens
    • mean: 21.23 tokens
    • max: 45 tokens
    • min: 3 tokens
    • mean: 25.14 tokens
    • max: 110 tokens
  • Samples:
    anchor positive
    Quels sont les noms des fils de Schobal? Aljan, Manahath, Ébal, Schephi et Onam
    Quels sont les noms des fils de Tsibeon? Ajja et Ana
    Qui est le fils d'Ana? Dischon
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 16
  • learning_rate: 2e-05
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • bf16: True
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 16
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 3
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss dim_768_cosine_ndcg@10 dim_512_cosine_ndcg@10 dim_256_cosine_ndcg@10 dim_128_cosine_ndcg@10 dim_64_cosine_ndcg@10
0.0538 10 12.8804 - - - - -
0.1076 20 12.4714 - - - - -
0.1615 30 11.8263 - - - - -
0.2153 40 11.014 - - - - -
0.2691 50 10.1609 - - - - -
0.3229 60 10.6807 - - - - -
0.3767 70 9.3215 - - - - -
0.4305 80 10.3719 - - - - -
0.4844 90 9.4147 - - - - -
0.5382 100 9.5567 - - - - -
0.5920 110 8.7699 - - - - -
0.6458 120 9.0428 - - - - -
0.6996 130 9.0977 - - - - -
0.7534 140 8.0843 - - - - -
0.8073 150 8.1363 - - - - -
0.8611 160 7.5306 - - - - -
0.9149 170 7.7972 - - - - -
0.9687 180 7.9644 - - - - -
0.9956 185 - 0.1917 0.1879 0.1784 0.1583 0.1268
1.0225 190 7.6124 - - - - -
1.0764 200 6.6315 - - - - -
1.1302 210 7.2313 - - - - -
1.1840 220 6.5394 - - - - -
1.2378 230 6.7843 - - - - -
1.2916 240 6.9276 - - - - -
1.3454 250 7.2281 - - - - -
1.3993 260 6.9158 - - - - -
1.4531 270 6.5158 - - - - -
1.5069 280 6.916 - - - - -
1.5607 290 6.5717 - - - - -
1.6145 300 6.9225 - - - - -
1.6683 310 7.3981 - - - - -
1.7222 320 6.894 - - - - -
1.7760 330 6.0293 - - - - -
1.8298 340 5.9389 - - - - -
1.8836 350 5.959 - - - - -
1.9374 360 6.4268 - - - - -
1.9913 370 6.7366 - - - - -
1.9966 371 - 0.2012 0.1965 0.1862 0.1633 0.1361
2.0451 380 5.7871 - - - - -
2.0989 390 5.7358 - - - - -
2.1527 400 6.0964 - - - - -
2.2065 410 5.8331 - - - - -
2.2603 420 5.6152 - - - - -
2.3142 430 6.5018 - - - - -
2.3680 440 5.9798 - - - - -
2.4218 450 6.0598 - - - - -
2.4756 460 5.8222 - - - - -
2.5294 470 6.303 - - - - -
2.5832 480 5.9648 - - - - -
2.6371 490 6.415 - - - - -
2.6909 500 7.084 - - - - -
2.7447 510 5.692 - - - - -
2.7985 520 5.7706 - - - - -
2.8523 530 5.6943 - - - - -
2.9062 540 5.6817 - - - - -
2.9600 550 6.1265 - - - - -
2.9869 555 - 0.1882 0.1815 0.1744 0.1557 0.1303
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.11.11
  • Sentence Transformers: 3.3.1
  • Transformers: 4.45.2
  • PyTorch: 2.5.1
  • Accelerate: 1.2.1
  • Datasets: 2.19.1
  • Tokenizers: 0.20.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
10
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Steve77/bge-base-bible-retrieval

Finetuned
(331)
this model

Evaluation results