ZhongYing
first commit
503ec99
raw
history blame
16 kB
import os
import io
import abc
import six
import numpy as np
import librosa
import soundfile as sf
import tensorflow as tf
from util.utils import log10
from .gammatone import fft_weights
def read_raw_audio(audio, sample_rate=16000):
if isinstance(audio, str):
wave, _ = librosa.load(os.path.expanduser(audio), sr=sample_rate)
elif isinstance(audio, bytes):
wave, sr = sf.read(io.BytesIO(audio))
wave = np.asfortranarray(wave)
if sr != sample_rate:
wave = librosa.resample(wave, sr, sample_rate)
elif isinstance(audio, np.ndarray):
return audio
else:
raise ValueError("input audio must be either a path or bytes")
return wave
def slice_signal(signal, window_size, stride=0.5) -> np.ndarray:
""" Return windows of the given signal by sweeping in stride fractions of window """
assert signal.ndim == 1, signal.ndim
n_samples = signal.shape[0]
offset = int(window_size * stride)
slices = []
for beg_i, end_i in zip(range(0, n_samples, offset),
range(window_size, n_samples + offset,
offset)):
slice_ = signal[beg_i:end_i]
if slice_.shape[0] < window_size:
slice_ = np.pad(
slice_, (0, window_size - slice_.shape[0]), 'constant', constant_values=0.0)
if slice_.shape[0] == window_size:
slices.append(slice_)
return np.array(slices, dtype=np.float32)
def tf_merge_slices(slices: tf.Tensor) -> tf.Tensor:
# slices shape = [batch, window_size]
return tf.keras.backend.flatten(slices) # return shape = [-1, ]
def merge_slices(slices: np.ndarray) -> np.ndarray:
# slices shape = [batch, window_size]
return np.reshape(slices, [-1])
def normalize_audio_feature(audio_feature: np.ndarray, per_feature=False):
""" Mean and variance normalization """
axis = 0 if per_feature else None
mean = np.mean(audio_feature, axis=axis)
std_dev = np.std(audio_feature, axis=axis) + 1e-9
normalized = (audio_feature - mean) / std_dev
return normalized
def tf_normalize_audio_features(audio_feature: tf.Tensor, per_feature=False):
"""
TF Mean and variance features normalization
Args:
audio_feature: tf.Tensor with shape [T, F]
Returns:
normalized audio features with shape [T, F]
"""
axis = 0 if per_feature else None
mean = tf.reduce_mean(audio_feature, axis=axis)
std_dev = tf.math.reduce_std(audio_feature, axis=axis) + 1e-9
return (audio_feature - mean) / std_dev
def normalize_signal(signal: np.ndarray):
""" Normailize signal to [-1, 1] range """
gain = 1.0 / (np.max(np.abs(signal)) + 1e-9)
return signal * gain
def tf_normalize_signal(signal: tf.Tensor):
"""
TF Normailize signal to [-1, 1] range
Args:
signal: tf.Tensor with shape [None]
Returns:
normalized signal with shape [None]
"""
gain = 1.0 / (tf.reduce_max(tf.abs(signal), axis=-1) + 1e-9)
return signal * gain
def preemphasis(signal: np.ndarray, coeff=0.97):
if not coeff or coeff <= 0.0:
return signal
return np.append(signal[0], signal[1:] - coeff * signal[:-1])
def tf_preemphasis(signal: tf.Tensor, coeff=0.97):
"""
TF Pre-emphasis
Args:
signal: tf.Tensor with shape [None]
coeff: Float that indicates the preemphasis coefficient
Returns:
pre-emphasized signal with shape [None]
"""
if not coeff or coeff <= 0.0: return signal
s0 = tf.expand_dims(signal[0], axis=-1)
s1 = signal[1:] - coeff * signal[:-1]
return tf.concat([s0, s1], axis=-1)
def depreemphasis(signal: np.ndarray, coeff=0.97):
if not coeff or coeff <= 0.0: return signal
x = np.zeros(signal.shape[0], dtype=np.float32)
x[0] = signal[0]
for n in range(1, signal.shape[0], 1):
x[n] = coeff * x[n - 1] + signal[n]
return x
def tf_depreemphasis(signal: tf.Tensor, coeff=0.97):
"""
TF Depreemphasis
Args:
signal: tf.Tensor with shape [B, None]
coeff: Float that indicates the preemphasis coefficient
Returns:
depre-emphasized signal with shape [B, None]
"""
if not coeff or coeff <= 0.0: return signal
def map_fn(elem):
x = tf.expand_dims(elem[0], axis=-1)
for n in range(1, elem.shape[0], 1):
current = coeff * x[n - 1] + elem[n]
x = tf.concat([x, [current]], axis=0)
return x
return tf.map_fn(map_fn, signal)
class SpeechFeaturizer(metaclass=abc.ABCMeta):
def __init__(self, speech_config: dict):
"""
We should use TFSpeechFeaturizer for training to avoid differences
between tf and librosa when converting to tflite in post-training stage
speech_config = {
"sample_rate": int,
"frame_ms": int,
"stride_ms": int,
"num_feature_bins": int,
"feature_type": str,
"delta": bool,
"delta_delta": bool,
"pitch": bool,
"normalize_signal": bool,
"normalize_feature": bool,
"normalize_per_feature": bool
}
"""
# Samples
self.sample_rate = speech_config.get("sample_rate", 16000)
self.frame_length = int(self.sample_rate * (speech_config.get("frame_ms", 25) / 1000))
self.frame_step = int(self.sample_rate * (speech_config.get("stride_ms", 10) / 1000))
# Features
self.num_feature_bins = speech_config.get("num_feature_bins", 80)
self.feature_type = speech_config.get("feature_type", "log_mel_spectrogram")
self.preemphasis = speech_config.get("preemphasis", None)
# Normalization
self.normalize_signal = speech_config.get("normalize_signal", True)
self.normalize_feature = speech_config.get("normalize_feature", True)
self.normalize_per_feature = speech_config.get("normalize_per_feature", False)
# librosa mel filter
self.mel_filter = None
@property
def nfft(self) -> int:
""" Number of FFT """
return 2 ** (self.frame_length - 1).bit_length()
@property
def shape(self) -> list:
""" The shape of extracted features """
raise NotImplementedError()
@abc.abstractclassmethod
def stft(self, signal):
raise NotImplementedError()
@abc.abstractclassmethod
def power_to_db(self, S, ref=1.0, amin=1e-10, top_db=80.0):
raise NotImplementedError()
@abc.abstractmethod
def extract(self, signal):
""" Function to perform feature extraction """
raise NotImplementedError()
class NumpySpeechFeaturizer(SpeechFeaturizer):
def __init__(self, speech_config: dict):
super(NumpySpeechFeaturizer, self).__init__(speech_config)
self.delta = speech_config.get("delta", False)
self.delta_delta = speech_config.get("delta_delta", False)
self.pitch = speech_config.get("pitch", False)
@property
def shape(self) -> list:
# None for time dimension
channel_dim = 1
if self.delta:
channel_dim += 1
if self.delta_delta:
channel_dim += 1
if self.pitch:
channel_dim += 1
return [None, self.num_feature_bins, channel_dim]
def stft(self, signal):
return np.square(
np.abs(librosa.core.stft(signal, n_fft=self.nfft, hop_length=self.frame_step,
win_length=self.frame_length, center=True, window="hann")))
def power_to_db(self, S, ref=1.0, amin=1e-10, top_db=80.0):
return librosa.power_to_db(S, ref=ref, amin=amin, top_db=top_db)
def extract(self, signal: np.ndarray) -> np.ndarray:
signal = np.asfortranarray(signal)
if self.normalize_signal:
signal = normalize_signal(signal)
signal = preemphasis(signal, self.preemphasis)
if self.feature_type == "mfcc":
features = self.compute_mfcc(signal)
elif self.feature_type == "log_mel_spectrogram":
features = self.compute_log_mel_spectrogram(signal)
elif self.feature_type == "spectrogram":
features = self.compute_spectrogram(signal)
elif self.feature_type == "log_gammatone_spectrogram":
features = self.compute_log_gammatone_spectrogram(signal)
else:
raise ValueError("feature_type must be either 'mfcc', "
"'log_mel_spectrogram', 'log_gammatone_spectrogram' "
"or 'spectrogram'")
if self.normalize_feature:
features = normalize_audio_feature(features, per_feature=self.normalize_per_feature)
# features = np.expand_dims(features, axis=-1)
return features
def compute_pitch(self, signal: np.ndarray) -> np.ndarray:
pitches, _ = librosa.core.piptrack(
y=signal, sr=self.sample_rate,
n_fft=self.nfft, hop_length=self.frame_step,
fmin=0.0, fmax=int(self.sample_rate / 2), win_length=self.frame_length, center=True
)
pitches = pitches.T
assert self.num_feature_bins <= self.frame_length // 2 + 1, \
"num_features for spectrogram should \
be <= (sample_rate * window_size // 2 + 1)"
return pitches[:, :self.num_feature_bins]
def compute_spectrogram(self, signal: np.ndarray) -> np.ndarray:
powspec = self.stft(signal)
features = self.power_to_db(powspec.T)
assert self.num_feature_bins <= self.frame_length // 2 + 1, \
"num_features for spectrogram should \
be <= (sample_rate * window_size // 2 + 1)"
# cut high frequency part, keep num_feature_bins features
features = features[:, :self.num_feature_bins]
return features
def compute_mfcc(self, signal: np.ndarray) -> np.ndarray:
S = self.stft(signal)
mel = librosa.filters.mel(self.sample_rate, self.nfft,
n_mels=self.num_feature_bins,
fmin=0.0, fmax=int(self.sample_rate / 2))
mel_spectrogram = np.dot(S.T, mel.T)
mfcc = librosa.feature.mfcc(sr=self.sample_rate,
S=self.power_to_db(mel_spectrogram).T,
n_mfcc=self.num_feature_bins)
return mfcc.T
def compute_log_mel_spectrogram(self, signal: np.ndarray) -> np.ndarray:
S = self.stft(signal)
mel = librosa.filters.mel(self.sample_rate, self.nfft,
n_mels=self.num_feature_bins,
fmin=0.0, fmax=int(self.sample_rate / 2))
mel_spectrogram = np.dot(S.T, mel.T)
return self.power_to_db(mel_spectrogram)
def compute_log_gammatone_spectrogram(self, signal: np.ndarray) -> np.ndarray:
S = self.stft(signal)
gammatone = fft_weights(self.nfft, self.sample_rate,
self.num_feature_bins, width=1.0,
fmin=0, fmax=int(self.sample_rate / 2),
maxlen=(self.nfft / 2 + 1))
gammatone = gammatone.numpy().astype(np.float32)
gammatone_spectrogram = np.dot(S.T, gammatone)
return self.power_to_db(gammatone_spectrogram)
class TFSpeechFeaturizer(SpeechFeaturizer):
@property
def shape(self) -> list:
# None for time dimension
return [None, self.num_feature_bins, 1]
def stft(self, signal):
signal = tf.pad(signal, [[self.nfft // 2, self.nfft // 2]], mode="REFLECT")
window = tf.signal.hann_window(self.frame_length, periodic=True)
left_pad = (self.nfft - self.frame_length) // 2
right_pad = self.nfft - self.frame_length - left_pad
window = tf.pad(window, [[left_pad, right_pad]])
framed_signals = tf.signal.frame(signal, frame_length=self.nfft, frame_step=self.frame_step)
framed_signals *= window
return tf.square(tf.abs(tf.signal.rfft(framed_signals, [self.nfft])))
def power_to_db(self, S, ref=1.0, amin=1e-10, top_db=80.0):
if amin <= 0:
raise ValueError('amin must be strictly positive')
magnitude = S
if six.callable(ref):
# User supplied a function to calculate reference power
ref_value = ref(magnitude)
else:
ref_value = np.abs(ref)
log_spec = 10.0 * log10(tf.maximum(amin, magnitude))
log_spec -= 10.0 * log10(tf.maximum(amin, ref_value))
if top_db is not None:
if top_db < 0:
raise ValueError('top_db must be non-negative')
log_spec = tf.maximum(log_spec, tf.reduce_max(log_spec) - top_db)
return log_spec
def extract(self, signal: np.ndarray) -> np.ndarray:
signal = np.asfortranarray(signal)
features = self.tf_extract(tf.convert_to_tensor(signal, dtype=tf.float32))
return features.numpy()
def tf_extract(self, signal: tf.Tensor) -> tf.Tensor:
"""
Extract speech features from signals (for using in tflite)
Args:
signal: tf.Tensor with shape [None]
Returns:
features: tf.Tensor with shape [T, F]
"""
if self.normalize_signal:
signal = tf_normalize_signal(signal)
signal = tf_preemphasis(signal, self.preemphasis)
if self.feature_type == "spectrogram":
features = self.compute_spectrogram(signal)
elif self.feature_type == "log_mel_spectrogram":
features = self.compute_log_mel_spectrogram(signal)
elif self.feature_type == "mfcc":
features = self.compute_mfcc(signal)
elif self.feature_type == "log_gammatone_spectrogram":
features = self.compute_log_gammatone_spectrogram(signal)
else:
raise ValueError("feature_type must be either 'mfcc',"
"'log_mel_spectrogram' or 'spectrogram'")
if self.normalize_feature:
features = tf_normalize_audio_features(
features, per_feature=self.normalize_per_feature)
# features = tf.expand_dims(features, axis=-1)
return features
def compute_log_mel_spectrogram(self, signal):
spectrogram = self.stft(signal)
if self.mel_filter is None:
linear_to_weight_matrix = tf.signal.linear_to_mel_weight_matrix(
num_mel_bins=self.num_feature_bins,
num_spectrogram_bins=spectrogram.shape[-1],
sample_rate=self.sample_rate,
lower_edge_hertz=0.0, upper_edge_hertz=(self.sample_rate / 2)
)
else:
linear_to_weight_matrix = self.mel_filter
mel_spectrogram = tf.tensordot(spectrogram, linear_to_weight_matrix, 1)
return self.power_to_db(mel_spectrogram)
def compute_spectrogram(self, signal):
S = self.stft(signal)
spectrogram = self.power_to_db(S)
return spectrogram[:, :self.num_feature_bins]
def compute_mfcc(self, signal):
log_mel_spectrogram = self.compute_log_mel_spectrogram(signal)
return tf.signal.mfccs_from_log_mel_spectrograms(log_mel_spectrogram)
def compute_log_gammatone_spectrogram(self, signal: np.ndarray) -> np.ndarray:
S = self.stft(signal)
gammatone = fft_weights(self.nfft, self.sample_rate,
self.num_feature_bins, width=1.0,
fmin=0, fmax=int(self.sample_rate / 2),
maxlen=(self.nfft / 2 + 1))
gammatone_spectrogram = tf.tensordot(S, gammatone, 1)
return self.power_to_db(gammatone_spectrogram)
def set_mel_filter(self, librosa_mel_filter):
"""
Set librosa mel filter.
"""
self.mel_filter = librosa_mel_filter