File size: 15,983 Bytes
503ec99 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 |
import os
import io
import abc
import six
import numpy as np
import librosa
import soundfile as sf
import tensorflow as tf
from util.utils import log10
from .gammatone import fft_weights
def read_raw_audio(audio, sample_rate=16000):
if isinstance(audio, str):
wave, _ = librosa.load(os.path.expanduser(audio), sr=sample_rate)
elif isinstance(audio, bytes):
wave, sr = sf.read(io.BytesIO(audio))
wave = np.asfortranarray(wave)
if sr != sample_rate:
wave = librosa.resample(wave, sr, sample_rate)
elif isinstance(audio, np.ndarray):
return audio
else:
raise ValueError("input audio must be either a path or bytes")
return wave
def slice_signal(signal, window_size, stride=0.5) -> np.ndarray:
""" Return windows of the given signal by sweeping in stride fractions of window """
assert signal.ndim == 1, signal.ndim
n_samples = signal.shape[0]
offset = int(window_size * stride)
slices = []
for beg_i, end_i in zip(range(0, n_samples, offset),
range(window_size, n_samples + offset,
offset)):
slice_ = signal[beg_i:end_i]
if slice_.shape[0] < window_size:
slice_ = np.pad(
slice_, (0, window_size - slice_.shape[0]), 'constant', constant_values=0.0)
if slice_.shape[0] == window_size:
slices.append(slice_)
return np.array(slices, dtype=np.float32)
def tf_merge_slices(slices: tf.Tensor) -> tf.Tensor:
# slices shape = [batch, window_size]
return tf.keras.backend.flatten(slices) # return shape = [-1, ]
def merge_slices(slices: np.ndarray) -> np.ndarray:
# slices shape = [batch, window_size]
return np.reshape(slices, [-1])
def normalize_audio_feature(audio_feature: np.ndarray, per_feature=False):
""" Mean and variance normalization """
axis = 0 if per_feature else None
mean = np.mean(audio_feature, axis=axis)
std_dev = np.std(audio_feature, axis=axis) + 1e-9
normalized = (audio_feature - mean) / std_dev
return normalized
def tf_normalize_audio_features(audio_feature: tf.Tensor, per_feature=False):
"""
TF Mean and variance features normalization
Args:
audio_feature: tf.Tensor with shape [T, F]
Returns:
normalized audio features with shape [T, F]
"""
axis = 0 if per_feature else None
mean = tf.reduce_mean(audio_feature, axis=axis)
std_dev = tf.math.reduce_std(audio_feature, axis=axis) + 1e-9
return (audio_feature - mean) / std_dev
def normalize_signal(signal: np.ndarray):
""" Normailize signal to [-1, 1] range """
gain = 1.0 / (np.max(np.abs(signal)) + 1e-9)
return signal * gain
def tf_normalize_signal(signal: tf.Tensor):
"""
TF Normailize signal to [-1, 1] range
Args:
signal: tf.Tensor with shape [None]
Returns:
normalized signal with shape [None]
"""
gain = 1.0 / (tf.reduce_max(tf.abs(signal), axis=-1) + 1e-9)
return signal * gain
def preemphasis(signal: np.ndarray, coeff=0.97):
if not coeff or coeff <= 0.0:
return signal
return np.append(signal[0], signal[1:] - coeff * signal[:-1])
def tf_preemphasis(signal: tf.Tensor, coeff=0.97):
"""
TF Pre-emphasis
Args:
signal: tf.Tensor with shape [None]
coeff: Float that indicates the preemphasis coefficient
Returns:
pre-emphasized signal with shape [None]
"""
if not coeff or coeff <= 0.0: return signal
s0 = tf.expand_dims(signal[0], axis=-1)
s1 = signal[1:] - coeff * signal[:-1]
return tf.concat([s0, s1], axis=-1)
def depreemphasis(signal: np.ndarray, coeff=0.97):
if not coeff or coeff <= 0.0: return signal
x = np.zeros(signal.shape[0], dtype=np.float32)
x[0] = signal[0]
for n in range(1, signal.shape[0], 1):
x[n] = coeff * x[n - 1] + signal[n]
return x
def tf_depreemphasis(signal: tf.Tensor, coeff=0.97):
"""
TF Depreemphasis
Args:
signal: tf.Tensor with shape [B, None]
coeff: Float that indicates the preemphasis coefficient
Returns:
depre-emphasized signal with shape [B, None]
"""
if not coeff or coeff <= 0.0: return signal
def map_fn(elem):
x = tf.expand_dims(elem[0], axis=-1)
for n in range(1, elem.shape[0], 1):
current = coeff * x[n - 1] + elem[n]
x = tf.concat([x, [current]], axis=0)
return x
return tf.map_fn(map_fn, signal)
class SpeechFeaturizer(metaclass=abc.ABCMeta):
def __init__(self, speech_config: dict):
"""
We should use TFSpeechFeaturizer for training to avoid differences
between tf and librosa when converting to tflite in post-training stage
speech_config = {
"sample_rate": int,
"frame_ms": int,
"stride_ms": int,
"num_feature_bins": int,
"feature_type": str,
"delta": bool,
"delta_delta": bool,
"pitch": bool,
"normalize_signal": bool,
"normalize_feature": bool,
"normalize_per_feature": bool
}
"""
# Samples
self.sample_rate = speech_config.get("sample_rate", 16000)
self.frame_length = int(self.sample_rate * (speech_config.get("frame_ms", 25) / 1000))
self.frame_step = int(self.sample_rate * (speech_config.get("stride_ms", 10) / 1000))
# Features
self.num_feature_bins = speech_config.get("num_feature_bins", 80)
self.feature_type = speech_config.get("feature_type", "log_mel_spectrogram")
self.preemphasis = speech_config.get("preemphasis", None)
# Normalization
self.normalize_signal = speech_config.get("normalize_signal", True)
self.normalize_feature = speech_config.get("normalize_feature", True)
self.normalize_per_feature = speech_config.get("normalize_per_feature", False)
# librosa mel filter
self.mel_filter = None
@property
def nfft(self) -> int:
""" Number of FFT """
return 2 ** (self.frame_length - 1).bit_length()
@property
def shape(self) -> list:
""" The shape of extracted features """
raise NotImplementedError()
@abc.abstractclassmethod
def stft(self, signal):
raise NotImplementedError()
@abc.abstractclassmethod
def power_to_db(self, S, ref=1.0, amin=1e-10, top_db=80.0):
raise NotImplementedError()
@abc.abstractmethod
def extract(self, signal):
""" Function to perform feature extraction """
raise NotImplementedError()
class NumpySpeechFeaturizer(SpeechFeaturizer):
def __init__(self, speech_config: dict):
super(NumpySpeechFeaturizer, self).__init__(speech_config)
self.delta = speech_config.get("delta", False)
self.delta_delta = speech_config.get("delta_delta", False)
self.pitch = speech_config.get("pitch", False)
@property
def shape(self) -> list:
# None for time dimension
channel_dim = 1
if self.delta:
channel_dim += 1
if self.delta_delta:
channel_dim += 1
if self.pitch:
channel_dim += 1
return [None, self.num_feature_bins, channel_dim]
def stft(self, signal):
return np.square(
np.abs(librosa.core.stft(signal, n_fft=self.nfft, hop_length=self.frame_step,
win_length=self.frame_length, center=True, window="hann")))
def power_to_db(self, S, ref=1.0, amin=1e-10, top_db=80.0):
return librosa.power_to_db(S, ref=ref, amin=amin, top_db=top_db)
def extract(self, signal: np.ndarray) -> np.ndarray:
signal = np.asfortranarray(signal)
if self.normalize_signal:
signal = normalize_signal(signal)
signal = preemphasis(signal, self.preemphasis)
if self.feature_type == "mfcc":
features = self.compute_mfcc(signal)
elif self.feature_type == "log_mel_spectrogram":
features = self.compute_log_mel_spectrogram(signal)
elif self.feature_type == "spectrogram":
features = self.compute_spectrogram(signal)
elif self.feature_type == "log_gammatone_spectrogram":
features = self.compute_log_gammatone_spectrogram(signal)
else:
raise ValueError("feature_type must be either 'mfcc', "
"'log_mel_spectrogram', 'log_gammatone_spectrogram' "
"or 'spectrogram'")
if self.normalize_feature:
features = normalize_audio_feature(features, per_feature=self.normalize_per_feature)
# features = np.expand_dims(features, axis=-1)
return features
def compute_pitch(self, signal: np.ndarray) -> np.ndarray:
pitches, _ = librosa.core.piptrack(
y=signal, sr=self.sample_rate,
n_fft=self.nfft, hop_length=self.frame_step,
fmin=0.0, fmax=int(self.sample_rate / 2), win_length=self.frame_length, center=True
)
pitches = pitches.T
assert self.num_feature_bins <= self.frame_length // 2 + 1, \
"num_features for spectrogram should \
be <= (sample_rate * window_size // 2 + 1)"
return pitches[:, :self.num_feature_bins]
def compute_spectrogram(self, signal: np.ndarray) -> np.ndarray:
powspec = self.stft(signal)
features = self.power_to_db(powspec.T)
assert self.num_feature_bins <= self.frame_length // 2 + 1, \
"num_features for spectrogram should \
be <= (sample_rate * window_size // 2 + 1)"
# cut high frequency part, keep num_feature_bins features
features = features[:, :self.num_feature_bins]
return features
def compute_mfcc(self, signal: np.ndarray) -> np.ndarray:
S = self.stft(signal)
mel = librosa.filters.mel(self.sample_rate, self.nfft,
n_mels=self.num_feature_bins,
fmin=0.0, fmax=int(self.sample_rate / 2))
mel_spectrogram = np.dot(S.T, mel.T)
mfcc = librosa.feature.mfcc(sr=self.sample_rate,
S=self.power_to_db(mel_spectrogram).T,
n_mfcc=self.num_feature_bins)
return mfcc.T
def compute_log_mel_spectrogram(self, signal: np.ndarray) -> np.ndarray:
S = self.stft(signal)
mel = librosa.filters.mel(self.sample_rate, self.nfft,
n_mels=self.num_feature_bins,
fmin=0.0, fmax=int(self.sample_rate / 2))
mel_spectrogram = np.dot(S.T, mel.T)
return self.power_to_db(mel_spectrogram)
def compute_log_gammatone_spectrogram(self, signal: np.ndarray) -> np.ndarray:
S = self.stft(signal)
gammatone = fft_weights(self.nfft, self.sample_rate,
self.num_feature_bins, width=1.0,
fmin=0, fmax=int(self.sample_rate / 2),
maxlen=(self.nfft / 2 + 1))
gammatone = gammatone.numpy().astype(np.float32)
gammatone_spectrogram = np.dot(S.T, gammatone)
return self.power_to_db(gammatone_spectrogram)
class TFSpeechFeaturizer(SpeechFeaturizer):
@property
def shape(self) -> list:
# None for time dimension
return [None, self.num_feature_bins, 1]
def stft(self, signal):
signal = tf.pad(signal, [[self.nfft // 2, self.nfft // 2]], mode="REFLECT")
window = tf.signal.hann_window(self.frame_length, periodic=True)
left_pad = (self.nfft - self.frame_length) // 2
right_pad = self.nfft - self.frame_length - left_pad
window = tf.pad(window, [[left_pad, right_pad]])
framed_signals = tf.signal.frame(signal, frame_length=self.nfft, frame_step=self.frame_step)
framed_signals *= window
return tf.square(tf.abs(tf.signal.rfft(framed_signals, [self.nfft])))
def power_to_db(self, S, ref=1.0, amin=1e-10, top_db=80.0):
if amin <= 0:
raise ValueError('amin must be strictly positive')
magnitude = S
if six.callable(ref):
# User supplied a function to calculate reference power
ref_value = ref(magnitude)
else:
ref_value = np.abs(ref)
log_spec = 10.0 * log10(tf.maximum(amin, magnitude))
log_spec -= 10.0 * log10(tf.maximum(amin, ref_value))
if top_db is not None:
if top_db < 0:
raise ValueError('top_db must be non-negative')
log_spec = tf.maximum(log_spec, tf.reduce_max(log_spec) - top_db)
return log_spec
def extract(self, signal: np.ndarray) -> np.ndarray:
signal = np.asfortranarray(signal)
features = self.tf_extract(tf.convert_to_tensor(signal, dtype=tf.float32))
return features.numpy()
def tf_extract(self, signal: tf.Tensor) -> tf.Tensor:
"""
Extract speech features from signals (for using in tflite)
Args:
signal: tf.Tensor with shape [None]
Returns:
features: tf.Tensor with shape [T, F]
"""
if self.normalize_signal:
signal = tf_normalize_signal(signal)
signal = tf_preemphasis(signal, self.preemphasis)
if self.feature_type == "spectrogram":
features = self.compute_spectrogram(signal)
elif self.feature_type == "log_mel_spectrogram":
features = self.compute_log_mel_spectrogram(signal)
elif self.feature_type == "mfcc":
features = self.compute_mfcc(signal)
elif self.feature_type == "log_gammatone_spectrogram":
features = self.compute_log_gammatone_spectrogram(signal)
else:
raise ValueError("feature_type must be either 'mfcc',"
"'log_mel_spectrogram' or 'spectrogram'")
if self.normalize_feature:
features = tf_normalize_audio_features(
features, per_feature=self.normalize_per_feature)
# features = tf.expand_dims(features, axis=-1)
return features
def compute_log_mel_spectrogram(self, signal):
spectrogram = self.stft(signal)
if self.mel_filter is None:
linear_to_weight_matrix = tf.signal.linear_to_mel_weight_matrix(
num_mel_bins=self.num_feature_bins,
num_spectrogram_bins=spectrogram.shape[-1],
sample_rate=self.sample_rate,
lower_edge_hertz=0.0, upper_edge_hertz=(self.sample_rate / 2)
)
else:
linear_to_weight_matrix = self.mel_filter
mel_spectrogram = tf.tensordot(spectrogram, linear_to_weight_matrix, 1)
return self.power_to_db(mel_spectrogram)
def compute_spectrogram(self, signal):
S = self.stft(signal)
spectrogram = self.power_to_db(S)
return spectrogram[:, :self.num_feature_bins]
def compute_mfcc(self, signal):
log_mel_spectrogram = self.compute_log_mel_spectrogram(signal)
return tf.signal.mfccs_from_log_mel_spectrograms(log_mel_spectrogram)
def compute_log_gammatone_spectrogram(self, signal: np.ndarray) -> np.ndarray:
S = self.stft(signal)
gammatone = fft_weights(self.nfft, self.sample_rate,
self.num_feature_bins, width=1.0,
fmin=0, fmax=int(self.sample_rate / 2),
maxlen=(self.nfft / 2 + 1))
gammatone_spectrogram = tf.tensordot(S, gammatone, 1)
return self.power_to_db(gammatone_spectrogram)
def set_mel_filter(self, librosa_mel_filter):
"""
Set librosa mel filter.
"""
self.mel_filter = librosa_mel_filter
|