BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from nomic-ai/modernbert-embed-base on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: nomic-ai/modernbert-embed-base
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Sorour/modernbert-financial-matryoshka")
# Run inference
sentences = [
"The company's financial report indicates that the pre-tax amounts of gains (losses) from foreign currency forward exchange contracts designated as cash flow hedges were gains of $82 million in 2021, gains of $103 million in 2022, and losses of $2 million in 2023.",
'What were the pre-tax amounts of (gains) losses from foreign currency forward exchange contracts designated as cash flow hedges for the years ended December 31 from 2021 to 2023?',
'What is the projected change in income before income taxes if the 2023 discount rate for the U.S. defined benefit pension and retiree health benefit plans changes by a quarter percentage point?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Datasets:
dim_768
,dim_256
anddim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | dim_768 | dim_256 | dim_64 |
---|---|---|---|
cosine_accuracy@1 | 0.6914 | 0.6643 | 0.62 |
cosine_accuracy@3 | 0.8171 | 0.81 | 0.7671 |
cosine_accuracy@5 | 0.87 | 0.8557 | 0.8171 |
cosine_accuracy@10 | 0.9129 | 0.8971 | 0.8743 |
cosine_precision@1 | 0.6914 | 0.6643 | 0.62 |
cosine_precision@3 | 0.2724 | 0.27 | 0.2557 |
cosine_precision@5 | 0.174 | 0.1711 | 0.1634 |
cosine_precision@10 | 0.0913 | 0.0897 | 0.0874 |
cosine_recall@1 | 0.6914 | 0.6643 | 0.62 |
cosine_recall@3 | 0.8171 | 0.81 | 0.7671 |
cosine_recall@5 | 0.87 | 0.8557 | 0.8171 |
cosine_recall@10 | 0.9129 | 0.8971 | 0.8743 |
cosine_ndcg@10 | 0.8015 | 0.7834 | 0.7453 |
cosine_mrr@10 | 0.7659 | 0.7468 | 0.7043 |
cosine_map@100 | 0.7695 | 0.7515 | 0.7091 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 6,300 training samples
- Columns:
positive
andanchor
- Approximate statistics based on the first 1000 samples:
positive anchor type string string details - min: 9 tokens
- mean: 47.08 tokens
- max: 998 tokens
- min: 9 tokens
- mean: 20.19 tokens
- max: 41 tokens
- Samples:
positive anchor Item 8 includes Financial Statements and Supplementary Data.
What type of data is found in Item 8 of detailed financial documentation?
HP records revenue from the sale of equipment under sales-type leases as revenue at the commencement of the lease. This method is applied unless certain conditions such as customer acceptance remain uncertain or significant obligations to the customer remain unfulfilled.
How does HP recognize revenue from the sale of equipment under sales-type leases?
The company maintains insurance coverage for general liability, property, business interruption, terrorism, and other risks with respect to their business for all of their owned and leased hotels.
What types of risks are usually covered by the company's insurance policies?
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 256, 64 ], "matryoshka_weights": [ 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Truetf32
: Trueload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Truelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
---|---|---|---|---|---|
0.8122 | 10 | 9.4544 | - | - | - |
1.0 | 13 | - | 0.7799 | 0.7650 | 0.7097 |
0.8122 | 10 | 3.1908 | - | - | - |
1.0 | 13 | - | 0.7952 | 0.7769 | 0.7259 |
1.5685 | 20 | 1.8807 | - | - | - |
2.0 | 26 | - | 0.8001 | 0.7833 | 0.7409 |
2.3249 | 30 | 1.7141 | - | - | - |
3.0 | 39 | - | 0.8023 | 0.7819 | 0.7460 |
3.0812 | 40 | 1.3672 | - | - | - |
3.731 | 48 | - | 0.8015 | 0.7834 | 0.7453 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.48.3
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 6
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for Sorour/modernbert-financial-matryoshka
Base model
answerdotai/ModernBERT-base
Finetuned
nomic-ai/modernbert-embed-base
Evaluation results
- Cosine Accuracy@1 on dim 768self-reported0.691
- Cosine Accuracy@3 on dim 768self-reported0.817
- Cosine Accuracy@5 on dim 768self-reported0.870
- Cosine Accuracy@10 on dim 768self-reported0.913
- Cosine Precision@1 on dim 768self-reported0.691
- Cosine Precision@3 on dim 768self-reported0.272
- Cosine Precision@5 on dim 768self-reported0.174
- Cosine Precision@10 on dim 768self-reported0.091
- Cosine Recall@1 on dim 768self-reported0.691
- Cosine Recall@3 on dim 768self-reported0.817