File size: 2,670 Bytes
eb6ab83
607ebbd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1069a7
eb6ab83
607ebbd
 
 
 
 
 
b1069a7
607ebbd
b1069a7
 
 
 
 
 
 
 
 
 
 
607ebbd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1069a7
 
 
607ebbd
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
---
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: ditmodel
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: train
      split: train
      args: train
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9425649095200629
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# ditmodel

This model was trained from scratch on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1359
- Accuracy: 0.9426
- Weighted f1: 0.9426
- Micro f1: 0.9426
- Macro f1: 0.9386
- Weighted recall: 0.9426
- Micro recall: 0.9426
- Macro recall: 0.9404
- Weighted precision: 0.9440
- Micro precision: 0.9426
- Macro precision: 0.9382

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted f1 | Micro f1 | Macro f1 | Weighted recall | Micro recall | Macro recall | Weighted precision | Micro precision | Macro precision |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:--------:|:--------:|:---------------:|:------------:|:------------:|:------------------:|:---------------:|:---------------:|
| 0.3093        | 0.98  | 38   | 0.2252          | 0.8891   | 0.8879      | 0.8891   | 0.8820   | 0.8891          | 0.8891       | 0.8738       | 0.8952             | 0.8891          | 0.8994          |
| 0.2278        | 1.99  | 77   | 0.1648          | 0.9292   | 0.9292      | 0.9292   | 0.9220   | 0.9292          | 0.9292       | 0.9221       | 0.9310             | 0.9292          | 0.9241          |
| 0.2066        | 2.94  | 114  | 0.1359          | 0.9426   | 0.9426      | 0.9426   | 0.9386   | 0.9426          | 0.9426       | 0.9404       | 0.9440             | 0.9426          | 0.9382          |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.6.1
- Tokenizers 0.15.1