SonishMaharjan
commited on
Commit
•
b1069a7
1
Parent(s):
18e7565
Model save
Browse files
README.md
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
---
|
2 |
-
base_model: microsoft/dit-base
|
3 |
tags:
|
4 |
- generated_from_trainer
|
5 |
datasets:
|
@@ -21,7 +20,7 @@ model-index:
|
|
21 |
metrics:
|
22 |
- name: Accuracy
|
23 |
type: accuracy
|
24 |
-
value: 0.
|
25 |
---
|
26 |
|
27 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -29,19 +28,19 @@ should probably proofread and complete it, then remove this comment. -->
|
|
29 |
|
30 |
# ditmodel
|
31 |
|
32 |
-
This model
|
33 |
It achieves the following results on the evaluation set:
|
34 |
-
- Loss: 0.
|
35 |
-
- Accuracy: 0.
|
36 |
-
- Weighted f1: 0.
|
37 |
-
- Micro f1: 0.
|
38 |
-
- Macro f1: 0.
|
39 |
-
- Weighted recall: 0.
|
40 |
-
- Micro recall: 0.
|
41 |
-
- Macro recall: 0.
|
42 |
-
- Weighted precision: 0.
|
43 |
-
- Micro precision: 0.
|
44 |
-
- Macro precision: 0.
|
45 |
|
46 |
## Model description
|
47 |
|
@@ -75,9 +74,9 @@ The following hyperparameters were used during training:
|
|
75 |
|
76 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted f1 | Micro f1 | Macro f1 | Weighted recall | Micro recall | Macro recall | Weighted precision | Micro precision | Macro precision |
|
77 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:--------:|:--------:|:---------------:|:------------:|:------------:|:------------------:|:---------------:|:---------------:|
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
|
82 |
|
83 |
### Framework versions
|
|
|
1 |
---
|
|
|
2 |
tags:
|
3 |
- generated_from_trainer
|
4 |
datasets:
|
|
|
20 |
metrics:
|
21 |
- name: Accuracy
|
22 |
type: accuracy
|
23 |
+
value: 0.9425649095200629
|
24 |
---
|
25 |
|
26 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
28 |
|
29 |
# ditmodel
|
30 |
|
31 |
+
This model was trained from scratch on the imagefolder dataset.
|
32 |
It achieves the following results on the evaluation set:
|
33 |
+
- Loss: 0.1359
|
34 |
+
- Accuracy: 0.9426
|
35 |
+
- Weighted f1: 0.9426
|
36 |
+
- Micro f1: 0.9426
|
37 |
+
- Macro f1: 0.9386
|
38 |
+
- Weighted recall: 0.9426
|
39 |
+
- Micro recall: 0.9426
|
40 |
+
- Macro recall: 0.9404
|
41 |
+
- Weighted precision: 0.9440
|
42 |
+
- Micro precision: 0.9426
|
43 |
+
- Macro precision: 0.9382
|
44 |
|
45 |
## Model description
|
46 |
|
|
|
74 |
|
75 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted f1 | Micro f1 | Macro f1 | Weighted recall | Micro recall | Macro recall | Weighted precision | Micro precision | Macro precision |
|
76 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:--------:|:--------:|:---------------:|:------------:|:------------:|:------------------:|:---------------:|:---------------:|
|
77 |
+
| 0.3093 | 0.98 | 38 | 0.2252 | 0.8891 | 0.8879 | 0.8891 | 0.8820 | 0.8891 | 0.8891 | 0.8738 | 0.8952 | 0.8891 | 0.8994 |
|
78 |
+
| 0.2278 | 1.99 | 77 | 0.1648 | 0.9292 | 0.9292 | 0.9292 | 0.9220 | 0.9292 | 0.9292 | 0.9221 | 0.9310 | 0.9292 | 0.9241 |
|
79 |
+
| 0.2066 | 2.94 | 114 | 0.1359 | 0.9426 | 0.9426 | 0.9426 | 0.9386 | 0.9426 | 0.9426 | 0.9404 | 0.9440 | 0.9426 | 0.9382 |
|
80 |
|
81 |
|
82 |
### Framework versions
|