|
--- |
|
license: apache-2.0 |
|
base_model: PRAli22/arat5-arabic-dialects-translation |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: t5-finetuned-ar-to-arsl2 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# t5-finetuned-ar-to-arsl2 |
|
|
|
This model is a fine-tuned version of [PRAli22/arat5-arabic-dialects-translation](https://huggingface.co./PRAli22/arat5-arabic-dialects-translation) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3244 |
|
- Rouge1: 0.0 |
|
- Rouge2: 0.0 |
|
- Rougel: 0.0 |
|
- Rougelsum: 0.0 |
|
- Gen Len: 5.2892 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 15 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| |
|
| No log | 0.99 | 78 | 0.4098 | 0.0 | 0.0 | 0.0 | 0.0 | 5.2132 | |
|
| No log | 1.99 | 157 | 0.3022 | 0.0 | 0.0 | 0.0 | 0.0 | 5.248 | |
|
| No log | 2.99 | 236 | 0.2753 | 0.0 | 0.0 | 0.0 | 0.0 | 5.2655 | |
|
| No log | 3.99 | 315 | 0.2742 | 0.0 | 0.0 | 0.0 | 0.0 | 5.275 | |
|
| No log | 5.0 | 394 | 0.2730 | 0.0 | 0.0 | 0.0 | 0.0 | 5.2845 | |
|
| No log | 6.0 | 473 | 0.2821 | 0.0 | 0.0 | 0.0 | 0.0 | 5.2805 | |
|
| 0.4176 | 7.0 | 552 | 0.2923 | 0.0 | 0.0 | 0.0 | 0.0 | 5.2868 | |
|
| 0.4176 | 8.0 | 631 | 0.2977 | 0.0 | 0.0 | 0.0 | 0.0 | 5.2892 | |
|
| 0.4176 | 8.99 | 709 | 0.2937 | 0.0 | 0.0 | 0.0 | 0.0 | 5.2964 | |
|
| 0.4176 | 9.99 | 788 | 0.3020 | 0.0 | 0.0 | 0.0 | 0.0 | 5.2916 | |
|
| 0.4176 | 10.99 | 867 | 0.3177 | 0.0 | 0.0 | 0.0 | 0.0 | 5.294 | |
|
| 0.4176 | 11.99 | 946 | 0.3186 | 0.0 | 0.0 | 0.0 | 0.0 | 5.2916 | |
|
| 0.0879 | 13.0 | 1025 | 0.3255 | 0.0 | 0.0 | 0.0 | 0.0 | 5.2884 | |
|
| 0.0879 | 14.0 | 1104 | 0.3241 | 0.0 | 0.0 | 0.0 | 0.0 | 5.2868 | |
|
| 0.0879 | 14.83 | 1170 | 0.3244 | 0.0 | 0.0 | 0.0 | 0.0 | 5.2892 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.39.3 |
|
- Pytorch 2.1.2 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|