spacemanidol's picture
Update README.md
e70ba91 verified
|
raw
history blame
68.7 kB
metadata
license: apache-2.0
tags:
  - mteb
  - arctic
  - arctic-embed
model-index:
  - name: snowflake-arctic-m-long
    results:
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_counterfactual
          name: MTEB AmazonCounterfactualClassification (en)
          config: en
          split: test
          revision: e8379541af4e31359cca9fbcf4b00f2671dba205
        metrics:
          - type: accuracy
            value: 78.4776119402985
          - type: ap
            value: 42.34374238166049
          - type: f1
            value: 72.51164234732224
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_polarity
          name: MTEB AmazonPolarityClassification
          config: default
          split: test
          revision: e2d317d38cd51312af73b3d32a06d1a08b442046
        metrics:
          - type: accuracy
            value: 78.7416
          - type: ap
            value: 73.12074819362377
          - type: f1
            value: 78.64057339708795
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (en)
          config: en
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 39.926
          - type: f1
            value: 39.35531993117573
      - task:
          type: Retrieval
        dataset:
          type: mteb/arguana
          name: MTEB ArguAna
          config: default
          split: test
          revision: c22ab2a51041ffd869aaddef7af8d8215647e41a
        metrics:
          - type: map_at_1
            value: 34.851
          - type: map_at_10
            value: 51.473
          - type: map_at_100
            value: 52.103
          - type: map_at_1000
            value: 52.105000000000004
          - type: map_at_3
            value: 46.776
          - type: map_at_5
            value: 49.617
          - type: mrr_at_1
            value: 35.491
          - type: mrr_at_10
            value: 51.73799999999999
          - type: mrr_at_100
            value: 52.37500000000001
          - type: mrr_at_1000
            value: 52.378
          - type: mrr_at_3
            value: 46.965
          - type: mrr_at_5
            value: 49.878
          - type: ndcg_at_1
            value: 34.851
          - type: ndcg_at_10
            value: 60.364
          - type: ndcg_at_100
            value: 62.888999999999996
          - type: ndcg_at_1000
            value: 62.946000000000005
          - type: ndcg_at_3
            value: 50.807
          - type: ndcg_at_5
            value: 55.901
          - type: precision_at_1
            value: 34.851
          - type: precision_at_10
            value: 8.855
          - type: precision_at_100
            value: 0.992
          - type: precision_at_1000
            value: 0.1
          - type: precision_at_3
            value: 20.839
          - type: precision_at_5
            value: 14.963999999999999
          - type: recall_at_1
            value: 34.851
          - type: recall_at_10
            value: 88.549
          - type: recall_at_100
            value: 99.21799999999999
          - type: recall_at_1000
            value: 99.644
          - type: recall_at_3
            value: 62.517999999999994
          - type: recall_at_5
            value: 74.822
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-p2p
          name: MTEB ArxivClusteringP2P
          config: default
          split: test
          revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
        metrics:
          - type: v_measure
            value: 45.5554998405317
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-s2s
          name: MTEB ArxivClusteringS2S
          config: default
          split: test
          revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
        metrics:
          - type: v_measure
            value: 35.614248811397005
      - task:
          type: Reranking
        dataset:
          type: mteb/askubuntudupquestions-reranking
          name: MTEB AskUbuntuDupQuestions
          config: default
          split: test
          revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
        metrics:
          - type: map
            value: 61.355489424753884
          - type: mrr
            value: 75.49443784900849
      - task:
          type: STS
        dataset:
          type: mteb/biosses-sts
          name: MTEB BIOSSES
          config: default
          split: test
          revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
        metrics:
          - type: cos_sim_pearson
            value: 89.17311056578292
          - type: cos_sim_spearman
            value: 88.24237210809322
          - type: euclidean_pearson
            value: 87.3188065853646
          - type: euclidean_spearman
            value: 88.24237210809322
          - type: manhattan_pearson
            value: 86.89499710049658
          - type: manhattan_spearman
            value: 87.85441146091777
      - task:
          type: Classification
        dataset:
          type: mteb/banking77
          name: MTEB Banking77Classification
          config: default
          split: test
          revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
        metrics:
          - type: accuracy
            value: 80.26298701298703
          - type: f1
            value: 79.68356764080303
      - task:
          type: Clustering
        dataset:
          type: jinaai/big-patent-clustering
          name: MTEB BigPatentClustering
          config: default
          split: test
          revision: 62d5330920bca426ce9d3c76ea914f15fc83e891
        metrics:
          - type: v_measure
            value: 20.923883720813706
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-p2p
          name: MTEB BiorxivClusteringP2P
          config: default
          split: test
          revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
        metrics:
          - type: v_measure
            value: 36.16058801465044
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-s2s
          name: MTEB BiorxivClusteringS2S
          config: default
          split: test
          revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
        metrics:
          - type: v_measure
            value: 30.1402356118627
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-android
          name: MTEB CQADupstackAndroidRetrieval
          config: default
          split: test
          revision: f46a197baaae43b4f621051089b82a364682dfeb
        metrics:
          - type: map_at_1
            value: 35.612
          - type: map_at_10
            value: 47.117
          - type: map_at_100
            value: 48.711
          - type: map_at_1000
            value: 48.826
          - type: map_at_3
            value: 43.858999999999995
          - type: map_at_5
            value: 45.612
          - type: mrr_at_1
            value: 42.918
          - type: mrr_at_10
            value: 52.806
          - type: mrr_at_100
            value: 53.564
          - type: mrr_at_1000
            value: 53.596999999999994
          - type: mrr_at_3
            value: 50.453
          - type: mrr_at_5
            value: 51.841
          - type: ndcg_at_1
            value: 42.918
          - type: ndcg_at_10
            value: 53.291999999999994
          - type: ndcg_at_100
            value: 58.711999999999996
          - type: ndcg_at_1000
            value: 60.317
          - type: ndcg_at_3
            value: 48.855
          - type: ndcg_at_5
            value: 50.778
          - type: precision_at_1
            value: 42.918
          - type: precision_at_10
            value: 9.927999999999999
          - type: precision_at_100
            value: 1.592
          - type: precision_at_1000
            value: 0.201
          - type: precision_at_3
            value: 23.366999999999997
          - type: precision_at_5
            value: 16.366
          - type: recall_at_1
            value: 35.612
          - type: recall_at_10
            value: 64.671
          - type: recall_at_100
            value: 86.97
          - type: recall_at_1000
            value: 96.99600000000001
          - type: recall_at_3
            value: 51.37199999999999
          - type: recall_at_5
            value: 57.094
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-english
          name: MTEB CQADupstackEnglishRetrieval
          config: default
          split: test
          revision: ad9991cb51e31e31e430383c75ffb2885547b5f0
        metrics:
          - type: map_at_1
            value: 33.742
          - type: map_at_10
            value: 44.49
          - type: map_at_100
            value: 45.781
          - type: map_at_1000
            value: 45.902
          - type: map_at_3
            value: 41.453
          - type: map_at_5
            value: 43.251
          - type: mrr_at_1
            value: 42.357
          - type: mrr_at_10
            value: 50.463
          - type: mrr_at_100
            value: 51.17
          - type: mrr_at_1000
            value: 51.205999999999996
          - type: mrr_at_3
            value: 48.397
          - type: mrr_at_5
            value: 49.649
          - type: ndcg_at_1
            value: 42.357
          - type: ndcg_at_10
            value: 50.175000000000004
          - type: ndcg_at_100
            value: 54.491
          - type: ndcg_at_1000
            value: 56.282
          - type: ndcg_at_3
            value: 46.159
          - type: ndcg_at_5
            value: 48.226
          - type: precision_at_1
            value: 42.357
          - type: precision_at_10
            value: 9.382
          - type: precision_at_100
            value: 1.473
          - type: precision_at_1000
            value: 0.191
          - type: precision_at_3
            value: 22.187
          - type: precision_at_5
            value: 15.758
          - type: recall_at_1
            value: 33.742
          - type: recall_at_10
            value: 59.760999999999996
          - type: recall_at_100
            value: 77.89500000000001
          - type: recall_at_1000
            value: 89.005
          - type: recall_at_3
            value: 47.872
          - type: recall_at_5
            value: 53.559
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-gaming
          name: MTEB CQADupstackGamingRetrieval
          config: default
          split: test
          revision: 4885aa143210c98657558c04aaf3dc47cfb54340
        metrics:
          - type: map_at_1
            value: 43.883
          - type: map_at_10
            value: 56.464999999999996
          - type: map_at_100
            value: 57.394
          - type: map_at_1000
            value: 57.443999999999996
          - type: map_at_3
            value: 53.169
          - type: map_at_5
            value: 54.984
          - type: mrr_at_1
            value: 50.470000000000006
          - type: mrr_at_10
            value: 59.997
          - type: mrr_at_100
            value: 60.586
          - type: mrr_at_1000
            value: 60.61
          - type: mrr_at_3
            value: 57.837
          - type: mrr_at_5
            value: 59.019
          - type: ndcg_at_1
            value: 50.470000000000006
          - type: ndcg_at_10
            value: 62.134
          - type: ndcg_at_100
            value: 65.69500000000001
          - type: ndcg_at_1000
            value: 66.674
          - type: ndcg_at_3
            value: 56.916999999999994
          - type: ndcg_at_5
            value: 59.312
          - type: precision_at_1
            value: 50.470000000000006
          - type: precision_at_10
            value: 9.812
          - type: precision_at_100
            value: 1.25
          - type: precision_at_1000
            value: 0.13699999999999998
          - type: precision_at_3
            value: 25.119999999999997
          - type: precision_at_5
            value: 17.016000000000002
          - type: recall_at_1
            value: 43.883
          - type: recall_at_10
            value: 75.417
          - type: recall_at_100
            value: 90.545
          - type: recall_at_1000
            value: 97.44500000000001
          - type: recall_at_3
            value: 61.306000000000004
          - type: recall_at_5
            value: 67.244
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-gis
          name: MTEB CQADupstackGisRetrieval
          config: default
          split: test
          revision: 5003b3064772da1887988e05400cf3806fe491f2
        metrics:
          - type: map_at_1
            value: 29.813000000000002
          - type: map_at_10
            value: 38.627
          - type: map_at_100
            value: 39.735
          - type: map_at_1000
            value: 39.806000000000004
          - type: map_at_3
            value: 36.283
          - type: map_at_5
            value: 37.491
          - type: mrr_at_1
            value: 32.316
          - type: mrr_at_10
            value: 40.752
          - type: mrr_at_100
            value: 41.699000000000005
          - type: mrr_at_1000
            value: 41.749
          - type: mrr_at_3
            value: 38.531
          - type: mrr_at_5
            value: 39.706
          - type: ndcg_at_1
            value: 32.316
          - type: ndcg_at_10
            value: 43.524
          - type: ndcg_at_100
            value: 48.648
          - type: ndcg_at_1000
            value: 50.405
          - type: ndcg_at_3
            value: 38.928000000000004
          - type: ndcg_at_5
            value: 40.967
          - type: precision_at_1
            value: 32.316
          - type: precision_at_10
            value: 6.451999999999999
          - type: precision_at_100
            value: 0.9490000000000001
          - type: precision_at_1000
            value: 0.11299999999999999
          - type: precision_at_3
            value: 16.384
          - type: precision_at_5
            value: 11.006
          - type: recall_at_1
            value: 29.813000000000002
          - type: recall_at_10
            value: 56.562999999999995
          - type: recall_at_100
            value: 79.452
          - type: recall_at_1000
            value: 92.715
          - type: recall_at_3
            value: 43.985
          - type: recall_at_5
            value: 49.001
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-mathematica
          name: MTEB CQADupstackMathematicaRetrieval
          config: default
          split: test
          revision: 90fceea13679c63fe563ded68f3b6f06e50061de
        metrics:
          - type: map_at_1
            value: 19.961000000000002
          - type: map_at_10
            value: 28.026
          - type: map_at_100
            value: 29.212
          - type: map_at_1000
            value: 29.332
          - type: map_at_3
            value: 25.296999999999997
          - type: map_at_5
            value: 26.832
          - type: mrr_at_1
            value: 24.627
          - type: mrr_at_10
            value: 33.045
          - type: mrr_at_100
            value: 33.944
          - type: mrr_at_1000
            value: 34.013
          - type: mrr_at_3
            value: 30.307000000000002
          - type: mrr_at_5
            value: 31.874000000000002
          - type: ndcg_at_1
            value: 24.627
          - type: ndcg_at_10
            value: 33.414
          - type: ndcg_at_100
            value: 39.061
          - type: ndcg_at_1000
            value: 41.795
          - type: ndcg_at_3
            value: 28.377000000000002
          - type: ndcg_at_5
            value: 30.781999999999996
          - type: precision_at_1
            value: 24.627
          - type: precision_at_10
            value: 6.02
          - type: precision_at_100
            value: 1.035
          - type: precision_at_1000
            value: 0.13899999999999998
          - type: precision_at_3
            value: 13.516
          - type: precision_at_5
            value: 9.851
          - type: recall_at_1
            value: 19.961000000000002
          - type: recall_at_10
            value: 45.174
          - type: recall_at_100
            value: 69.69
          - type: recall_at_1000
            value: 89.24600000000001
          - type: recall_at_3
            value: 31.062
          - type: recall_at_5
            value: 37.193
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-physics
          name: MTEB CQADupstackPhysicsRetrieval
          config: default
          split: test
          revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4
        metrics:
          - type: map_at_1
            value: 32.080999999999996
          - type: map_at_10
            value: 42.177
          - type: map_at_100
            value: 43.431999999999995
          - type: map_at_1000
            value: 43.533
          - type: map_at_3
            value: 38.721
          - type: map_at_5
            value: 40.669
          - type: mrr_at_1
            value: 38.787
          - type: mrr_at_10
            value: 47.762
          - type: mrr_at_100
            value: 48.541000000000004
          - type: mrr_at_1000
            value: 48.581
          - type: mrr_at_3
            value: 45.123999999999995
          - type: mrr_at_5
            value: 46.639
          - type: ndcg_at_1
            value: 38.787
          - type: ndcg_at_10
            value: 48.094
          - type: ndcg_at_100
            value: 53.291
          - type: ndcg_at_1000
            value: 55.21
          - type: ndcg_at_3
            value: 42.721
          - type: ndcg_at_5
            value: 45.301
          - type: precision_at_1
            value: 38.787
          - type: precision_at_10
            value: 8.576
          - type: precision_at_100
            value: 1.306
          - type: precision_at_1000
            value: 0.164
          - type: precision_at_3
            value: 19.698
          - type: precision_at_5
            value: 14.013
          - type: recall_at_1
            value: 32.080999999999996
          - type: recall_at_10
            value: 59.948
          - type: recall_at_100
            value: 81.811
          - type: recall_at_1000
            value: 94.544
          - type: recall_at_3
            value: 44.903999999999996
          - type: recall_at_5
            value: 51.763999999999996
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-programmers
          name: MTEB CQADupstackProgrammersRetrieval
          config: default
          split: test
          revision: 6184bc1440d2dbc7612be22b50686b8826d22b32
        metrics:
          - type: map_at_1
            value: 28.869
          - type: map_at_10
            value: 38.954
          - type: map_at_100
            value: 40.233000000000004
          - type: map_at_1000
            value: 40.332
          - type: map_at_3
            value: 35.585
          - type: map_at_5
            value: 37.476
          - type: mrr_at_1
            value: 35.959
          - type: mrr_at_10
            value: 44.800000000000004
          - type: mrr_at_100
            value: 45.609
          - type: mrr_at_1000
            value: 45.655
          - type: mrr_at_3
            value: 42.333
          - type: mrr_at_5
            value: 43.68
          - type: ndcg_at_1
            value: 35.959
          - type: ndcg_at_10
            value: 44.957
          - type: ndcg_at_100
            value: 50.275000000000006
          - type: ndcg_at_1000
            value: 52.29899999999999
          - type: ndcg_at_3
            value: 39.797
          - type: ndcg_at_5
            value: 42.128
          - type: precision_at_1
            value: 35.959
          - type: precision_at_10
            value: 8.185
          - type: precision_at_100
            value: 1.261
          - type: precision_at_1000
            value: 0.159
          - type: precision_at_3
            value: 18.988
          - type: precision_at_5
            value: 13.516
          - type: recall_at_1
            value: 28.869
          - type: recall_at_10
            value: 57.154
          - type: recall_at_100
            value: 79.764
          - type: recall_at_1000
            value: 93.515
          - type: recall_at_3
            value: 42.364000000000004
          - type: recall_at_5
            value: 48.756
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack
          name: MTEB CQADupstackRetrieval
          config: default
          split: test
          revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
        metrics:
          - type: map_at_1
            value: 29.31008333333333
          - type: map_at_10
            value: 38.81849999999999
          - type: map_at_100
            value: 40.05058333333334
          - type: map_at_1000
            value: 40.16116666666667
          - type: map_at_3
            value: 35.91441666666667
          - type: map_at_5
            value: 37.526583333333335
          - type: mrr_at_1
            value: 34.60066666666667
          - type: mrr_at_10
            value: 43.08858333333333
          - type: mrr_at_100
            value: 43.927749999999996
          - type: mrr_at_1000
            value: 43.97866666666667
          - type: mrr_at_3
            value: 40.72775
          - type: mrr_at_5
            value: 42.067249999999994
          - type: ndcg_at_1
            value: 34.60066666666667
          - type: ndcg_at_10
            value: 44.20841666666667
          - type: ndcg_at_100
            value: 49.32866666666667
          - type: ndcg_at_1000
            value: 51.373999999999995
          - type: ndcg_at_3
            value: 39.452083333333334
          - type: ndcg_at_5
            value: 41.67
          - type: precision_at_1
            value: 34.60066666666667
          - type: precision_at_10
            value: 7.616583333333334
          - type: precision_at_100
            value: 1.20175
          - type: precision_at_1000
            value: 0.156
          - type: precision_at_3
            value: 17.992
          - type: precision_at_5
            value: 12.658416666666666
          - type: recall_at_1
            value: 29.31008333333333
          - type: recall_at_10
            value: 55.81900000000001
          - type: recall_at_100
            value: 78.06308333333334
          - type: recall_at_1000
            value: 92.10641666666668
          - type: recall_at_3
            value: 42.50166666666667
          - type: recall_at_5
            value: 48.26108333333333
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-stats
          name: MTEB CQADupstackStatsRetrieval
          config: default
          split: test
          revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a
        metrics:
          - type: map_at_1
            value: 26.773000000000003
          - type: map_at_10
            value: 34.13
          - type: map_at_100
            value: 35.113
          - type: map_at_1000
            value: 35.211
          - type: map_at_3
            value: 31.958
          - type: map_at_5
            value: 33.080999999999996
          - type: mrr_at_1
            value: 30.061
          - type: mrr_at_10
            value: 37.061
          - type: mrr_at_100
            value: 37.865
          - type: mrr_at_1000
            value: 37.939
          - type: mrr_at_3
            value: 34.995
          - type: mrr_at_5
            value: 36.092
          - type: ndcg_at_1
            value: 30.061
          - type: ndcg_at_10
            value: 38.391999999999996
          - type: ndcg_at_100
            value: 43.13
          - type: ndcg_at_1000
            value: 45.449
          - type: ndcg_at_3
            value: 34.411
          - type: ndcg_at_5
            value: 36.163000000000004
          - type: precision_at_1
            value: 30.061
          - type: precision_at_10
            value: 5.982
          - type: precision_at_100
            value: 0.911
          - type: precision_at_1000
            value: 0.11800000000000001
          - type: precision_at_3
            value: 14.673
          - type: precision_at_5
            value: 10.030999999999999
          - type: recall_at_1
            value: 26.773000000000003
          - type: recall_at_10
            value: 48.445
          - type: recall_at_100
            value: 69.741
          - type: recall_at_1000
            value: 86.59
          - type: recall_at_3
            value: 37.576
          - type: recall_at_5
            value: 41.948
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-tex
          name: MTEB CQADupstackTexRetrieval
          config: default
          split: test
          revision: 46989137a86843e03a6195de44b09deda022eec7
        metrics:
          - type: map_at_1
            value: 18.556
          - type: map_at_10
            value: 26.340999999999998
          - type: map_at_100
            value: 27.560000000000002
          - type: map_at_1000
            value: 27.685
          - type: map_at_3
            value: 24.136
          - type: map_at_5
            value: 25.34
          - type: mrr_at_1
            value: 22.368
          - type: mrr_at_10
            value: 30.192999999999998
          - type: mrr_at_100
            value: 31.183
          - type: mrr_at_1000
            value: 31.258000000000003
          - type: mrr_at_3
            value: 28.223
          - type: mrr_at_5
            value: 29.294999999999998
          - type: ndcg_at_1
            value: 22.368
          - type: ndcg_at_10
            value: 31.029
          - type: ndcg_at_100
            value: 36.768
          - type: ndcg_at_1000
            value: 39.572
          - type: ndcg_at_3
            value: 27.197
          - type: ndcg_at_5
            value: 28.912
          - type: precision_at_1
            value: 22.368
          - type: precision_at_10
            value: 5.606
          - type: precision_at_100
            value: 0.9979999999999999
          - type: precision_at_1000
            value: 0.14100000000000001
          - type: precision_at_3
            value: 12.892999999999999
          - type: precision_at_5
            value: 9.16
          - type: recall_at_1
            value: 18.556
          - type: recall_at_10
            value: 41.087
          - type: recall_at_100
            value: 66.92
          - type: recall_at_1000
            value: 86.691
          - type: recall_at_3
            value: 30.415
          - type: recall_at_5
            value: 34.813
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-unix
          name: MTEB CQADupstackUnixRetrieval
          config: default
          split: test
          revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53
        metrics:
          - type: map_at_1
            value: 29.953999999999997
          - type: map_at_10
            value: 39.633
          - type: map_at_100
            value: 40.923
          - type: map_at_1000
            value: 41.016000000000005
          - type: map_at_3
            value: 36.609
          - type: map_at_5
            value: 38.443
          - type: mrr_at_1
            value: 35.354
          - type: mrr_at_10
            value: 43.718
          - type: mrr_at_100
            value: 44.651999999999994
          - type: mrr_at_1000
            value: 44.696000000000005
          - type: mrr_at_3
            value: 41.154
          - type: mrr_at_5
            value: 42.730000000000004
          - type: ndcg_at_1
            value: 35.354
          - type: ndcg_at_10
            value: 44.933
          - type: ndcg_at_100
            value: 50.577000000000005
          - type: ndcg_at_1000
            value: 52.428
          - type: ndcg_at_3
            value: 39.833
          - type: ndcg_at_5
            value: 42.465
          - type: precision_at_1
            value: 35.354
          - type: precision_at_10
            value: 7.416
          - type: precision_at_100
            value: 1.157
          - type: precision_at_1000
            value: 0.14100000000000001
          - type: precision_at_3
            value: 17.817
          - type: precision_at_5
            value: 12.687000000000001
          - type: recall_at_1
            value: 29.953999999999997
          - type: recall_at_10
            value: 56.932
          - type: recall_at_100
            value: 80.93900000000001
          - type: recall_at_1000
            value: 93.582
          - type: recall_at_3
            value: 43.192
          - type: recall_at_5
            value: 49.757
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-webmasters
          name: MTEB CQADupstackWebmastersRetrieval
          config: default
          split: test
          revision: 160c094312a0e1facb97e55eeddb698c0abe3571
        metrics:
          - type: map_at_1
            value: 27.85
          - type: map_at_10
            value: 37.68
          - type: map_at_100
            value: 39.295
          - type: map_at_1000
            value: 39.527
          - type: map_at_3
            value: 35.036
          - type: map_at_5
            value: 36.269
          - type: mrr_at_1
            value: 33.004
          - type: mrr_at_10
            value: 42.096000000000004
          - type: mrr_at_100
            value: 43.019
          - type: mrr_at_1000
            value: 43.071
          - type: mrr_at_3
            value: 39.987
          - type: mrr_at_5
            value: 40.995
          - type: ndcg_at_1
            value: 33.004
          - type: ndcg_at_10
            value: 43.461
          - type: ndcg_at_100
            value: 49.138
          - type: ndcg_at_1000
            value: 51.50900000000001
          - type: ndcg_at_3
            value: 39.317
          - type: ndcg_at_5
            value: 40.760999999999996
          - type: precision_at_1
            value: 33.004
          - type: precision_at_10
            value: 8.161999999999999
          - type: precision_at_100
            value: 1.583
          - type: precision_at_1000
            value: 0.245
          - type: precision_at_3
            value: 18.445
          - type: precision_at_5
            value: 12.885
          - type: recall_at_1
            value: 27.85
          - type: recall_at_10
            value: 54.419
          - type: recall_at_100
            value: 79.742
          - type: recall_at_1000
            value: 93.97
          - type: recall_at_3
            value: 42.149
          - type: recall_at_5
            value: 46.165
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-wordpress
          name: MTEB CQADupstackWordpressRetrieval
          config: default
          split: test
          revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
        metrics:
          - type: map_at_1
            value: 24.627
          - type: map_at_10
            value: 32.182
          - type: map_at_100
            value: 33.217999999999996
          - type: map_at_1000
            value: 33.32
          - type: map_at_3
            value: 28.866999999999997
          - type: map_at_5
            value: 30.871
          - type: mrr_at_1
            value: 26.987
          - type: mrr_at_10
            value: 34.37
          - type: mrr_at_100
            value: 35.301
          - type: mrr_at_1000
            value: 35.369
          - type: mrr_at_3
            value: 31.391999999999996
          - type: mrr_at_5
            value: 33.287
          - type: ndcg_at_1
            value: 26.987
          - type: ndcg_at_10
            value: 37.096000000000004
          - type: ndcg_at_100
            value: 42.158
          - type: ndcg_at_1000
            value: 44.548
          - type: ndcg_at_3
            value: 30.913
          - type: ndcg_at_5
            value: 34.245
          - type: precision_at_1
            value: 26.987
          - type: precision_at_10
            value: 5.878
          - type: precision_at_100
            value: 0.906
          - type: precision_at_1000
            value: 0.123
          - type: precision_at_3
            value: 12.815999999999999
          - type: precision_at_5
            value: 9.612
          - type: recall_at_1
            value: 24.627
          - type: recall_at_10
            value: 50.257
          - type: recall_at_100
            value: 73.288
          - type: recall_at_1000
            value: 90.97800000000001
          - type: recall_at_3
            value: 33.823
          - type: recall_at_5
            value: 41.839
      - task:
          type: Retrieval
        dataset:
          type: mteb/climate-fever
          name: MTEB ClimateFEVER
          config: default
          split: test
          revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380
        metrics:
          - type: map_at_1
            value: 17.343
          - type: map_at_10
            value: 28.59
          - type: map_at_100
            value: 30.591
          - type: map_at_1000
            value: 30.759999999999998
          - type: map_at_3
            value: 24.197
          - type: map_at_5
            value: 26.433
          - type: mrr_at_1
            value: 39.609
          - type: mrr_at_10
            value: 51.107
          - type: mrr_at_100
            value: 51.87199999999999
          - type: mrr_at_1000
            value: 51.894
          - type: mrr_at_3
            value: 48.154
          - type: mrr_at_5
            value: 49.939
          - type: ndcg_at_1
            value: 39.609
          - type: ndcg_at_10
            value: 38.329
          - type: ndcg_at_100
            value: 45.573
          - type: ndcg_at_1000
            value: 48.405
          - type: ndcg_at_3
            value: 32.506
          - type: ndcg_at_5
            value: 34.331
          - type: precision_at_1
            value: 39.609
          - type: precision_at_10
            value: 11.668000000000001
          - type: precision_at_100
            value: 1.9539999999999997
          - type: precision_at_1000
            value: 0.249
          - type: precision_at_3
            value: 23.952
          - type: precision_at_5
            value: 17.902
          - type: recall_at_1
            value: 17.343
          - type: recall_at_10
            value: 43.704
          - type: recall_at_100
            value: 68.363
          - type: recall_at_1000
            value: 84.04599999999999
          - type: recall_at_3
            value: 29.028
          - type: recall_at_5
            value: 35.022
      - task:
          type: Retrieval
        dataset:
          type: mteb/dbpedia
          name: MTEB DBPedia
          config: default
          split: test
          revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659
        metrics:
          - type: map_at_1
            value: 9.934999999999999
          - type: map_at_10
            value: 22.081
          - type: map_at_100
            value: 32.036
          - type: map_at_1000
            value: 33.803
          - type: map_at_3
            value: 15.687999999999999
          - type: map_at_5
            value: 18.357
          - type: mrr_at_1
            value: 70.75
          - type: mrr_at_10
            value: 78.506
          - type: mrr_at_100
            value: 78.874
          - type: mrr_at_1000
            value: 78.88300000000001
          - type: mrr_at_3
            value: 77.667
          - type: mrr_at_5
            value: 78.342
          - type: ndcg_at_1
            value: 57.25
          - type: ndcg_at_10
            value: 45.286
          - type: ndcg_at_100
            value: 50.791
          - type: ndcg_at_1000
            value: 58.021
          - type: ndcg_at_3
            value: 49.504
          - type: ndcg_at_5
            value: 47.03
          - type: precision_at_1
            value: 70.75
          - type: precision_at_10
            value: 36.425000000000004
          - type: precision_at_100
            value: 11.953
          - type: precision_at_1000
            value: 2.248
          - type: precision_at_3
            value: 53.25
          - type: precision_at_5
            value: 46.150000000000006
          - type: recall_at_1
            value: 9.934999999999999
          - type: recall_at_10
            value: 27.592
          - type: recall_at_100
            value: 58.089
          - type: recall_at_1000
            value: 81.025
          - type: recall_at_3
            value: 17.048
          - type: recall_at_5
            value: 20.834
      - task:
          type: Classification
        dataset:
          type: mteb/emotion
          name: MTEB EmotionClassification
          config: default
          split: test
          revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
        metrics:
          - type: accuracy
            value: 47.25999999999999
          - type: f1
            value: 43.83371155132253
      - task:
          type: Retrieval
        dataset:
          type: mteb/fever
          name: MTEB FEVER
          config: default
          split: test
          revision: bea83ef9e8fb933d90a2f1d5515737465d613e12
        metrics:
          - type: map_at_1
            value: 73.68900000000001
          - type: map_at_10
            value: 82.878
          - type: map_at_100
            value: 83.084
          - type: map_at_1000
            value: 83.097
          - type: map_at_3
            value: 81.528
          - type: map_at_5
            value: 82.432
          - type: mrr_at_1
            value: 79.49300000000001
          - type: mrr_at_10
            value: 87.24300000000001
          - type: mrr_at_100
            value: 87.3
          - type: mrr_at_1000
            value: 87.301
          - type: mrr_at_3
            value: 86.359
          - type: mrr_at_5
            value: 87.01
          - type: ndcg_at_1
            value: 79.49300000000001
          - type: ndcg_at_10
            value: 86.894
          - type: ndcg_at_100
            value: 87.6
          - type: ndcg_at_1000
            value: 87.79299999999999
          - type: ndcg_at_3
            value: 84.777
          - type: ndcg_at_5
            value: 86.08
          - type: precision_at_1
            value: 79.49300000000001
          - type: precision_at_10
            value: 10.578
          - type: precision_at_100
            value: 1.117
          - type: precision_at_1000
            value: 0.11499999999999999
          - type: precision_at_3
            value: 32.592999999999996
          - type: precision_at_5
            value: 20.423
          - type: recall_at_1
            value: 73.68900000000001
          - type: recall_at_10
            value: 94.833
          - type: recall_at_100
            value: 97.554
          - type: recall_at_1000
            value: 98.672
          - type: recall_at_3
            value: 89.236
          - type: recall_at_5
            value: 92.461
      - task:
          type: Retrieval
        dataset:
          type: mteb/fiqa
          name: MTEB FiQA2018
          config: default
          split: test
          revision: 27a168819829fe9bcd655c2df245fb19452e8e06
        metrics:
          - type: map_at_1
            value: 20.59
          - type: map_at_10
            value: 34.089000000000006
          - type: map_at_100
            value: 35.796
          - type: map_at_1000
            value: 35.988
          - type: map_at_3
            value: 29.877
          - type: map_at_5
            value: 32.202999999999996
          - type: mrr_at_1
            value: 41.049
          - type: mrr_at_10
            value: 50.370000000000005
          - type: mrr_at_100
            value: 51.209
          - type: mrr_at_1000
            value: 51.247
          - type: mrr_at_3
            value: 48.122
          - type: mrr_at_5
            value: 49.326
          - type: ndcg_at_1
            value: 41.049
          - type: ndcg_at_10
            value: 42.163000000000004
          - type: ndcg_at_100
            value: 48.638999999999996
          - type: ndcg_at_1000
            value: 51.775000000000006
          - type: ndcg_at_3
            value: 38.435
          - type: ndcg_at_5
            value: 39.561
          - type: precision_at_1
            value: 41.049
          - type: precision_at_10
            value: 11.481
          - type: precision_at_100
            value: 1.8239999999999998
          - type: precision_at_1000
            value: 0.24
          - type: precision_at_3
            value: 25.257
          - type: precision_at_5
            value: 18.519
          - type: recall_at_1
            value: 20.59
          - type: recall_at_10
            value: 49.547999999999995
          - type: recall_at_100
            value: 73.676
          - type: recall_at_1000
            value: 92.269
          - type: recall_at_3
            value: 35.656
          - type: recall_at_5
            value: 41.455
      - task:
          type: Retrieval
        dataset:
          type: mteb/hotpotqa
          name: MTEB HotpotQA
          config: default
          split: test
          revision: ab518f4d6fcca38d87c25209f94beba119d02014
        metrics:
          - type: map_at_1
            value: 39.932
          - type: map_at_10
            value: 64.184
          - type: map_at_100
            value: 65.06
          - type: map_at_1000
            value: 65.109
          - type: map_at_3
            value: 60.27
          - type: map_at_5
            value: 62.732
          - type: mrr_at_1
            value: 79.865
          - type: mrr_at_10
            value: 85.99799999999999
          - type: mrr_at_100
            value: 86.13
          - type: mrr_at_1000
            value: 86.13300000000001
          - type: mrr_at_3
            value: 85.136
          - type: mrr_at_5
            value: 85.69200000000001
          - type: ndcg_at_1
            value: 79.865
          - type: ndcg_at_10
            value: 72.756
          - type: ndcg_at_100
            value: 75.638
          - type: ndcg_at_1000
            value: 76.589
          - type: ndcg_at_3
            value: 67.38199999999999
          - type: ndcg_at_5
            value: 70.402
          - type: precision_at_1
            value: 79.865
          - type: precision_at_10
            value: 15.387999999999998
          - type: precision_at_100
            value: 1.7610000000000001
          - type: precision_at_1000
            value: 0.189
          - type: precision_at_3
            value: 43.394
          - type: precision_at_5
            value: 28.424
          - type: recall_at_1
            value: 39.932
          - type: recall_at_10
            value: 76.941
          - type: recall_at_100
            value: 88.062
          - type: recall_at_1000
            value: 94.396
          - type: recall_at_3
            value: 65.091
          - type: recall_at_5
            value: 71.06
      - task:
          type: Classification
        dataset:
          type: mteb/imdb
          name: MTEB ImdbClassification
          config: default
          split: test
          revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
        metrics:
          - type: accuracy
            value: 71.7904
          - type: ap
            value: 65.82899456730257
          - type: f1
            value: 71.56611877410202
      - task:
          type: Retrieval
        dataset:
          type: mteb/msmarco
          name: MTEB MSMARCO
          config: default
          split: dev
          revision: c5a29a104738b98a9e76336939199e264163d4a0
        metrics:
          - type: map_at_1
            value: 21.931
          - type: map_at_10
            value: 34.849999999999994
          - type: map_at_100
            value: 36.033
          - type: map_at_1000
            value: 36.08
          - type: map_at_3
            value: 30.842000000000002
          - type: map_at_5
            value: 33.229
          - type: mrr_at_1
            value: 22.55
          - type: mrr_at_10
            value: 35.436
          - type: mrr_at_100
            value: 36.563
          - type: mrr_at_1000
            value: 36.604
          - type: mrr_at_3
            value: 31.507
          - type: mrr_at_5
            value: 33.851
          - type: ndcg_at_1
            value: 22.55
          - type: ndcg_at_10
            value: 41.969
          - type: ndcg_at_100
            value: 47.576
          - type: ndcg_at_1000
            value: 48.731
          - type: ndcg_at_3
            value: 33.894000000000005
          - type: ndcg_at_5
            value: 38.133
          - type: precision_at_1
            value: 22.55
          - type: precision_at_10
            value: 6.660000000000001
          - type: precision_at_100
            value: 0.946
          - type: precision_at_1000
            value: 0.104
          - type: precision_at_3
            value: 14.532
          - type: precision_at_5
            value: 10.865
          - type: recall_at_1
            value: 21.931
          - type: recall_at_10
            value: 63.841
          - type: recall_at_100
            value: 89.47699999999999
          - type: recall_at_1000
            value: 98.259
          - type: recall_at_3
            value: 42.063
          - type: recall_at_5
            value: 52.21
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (en)
          config: en
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 93.03921568627452
          - type: f1
            value: 92.56400672314416
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (en)
          config: en
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 63.515731874145
          - type: f1
            value: 44.922310875523216
      - task:
          type: Classification
        dataset:
          type: masakhane/masakhanews
          name: MTEB MasakhaNEWSClassification (eng)
          config: eng
          split: test
          revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60
        metrics:
          - type: accuracy
            value: 77.57383966244727
          - type: f1
            value: 76.55222378218293
      - task:
          type: Clustering
        dataset:
          type: masakhane/masakhanews
          name: MTEB MasakhaNEWSClusteringP2P (eng)
          config: eng
          split: test
          revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60
        metrics:
          - type: v_measure
            value: 62.74836240280833
      - task:
          type: Clustering
        dataset:
          type: masakhane/masakhanews
          name: MTEB MasakhaNEWSClusteringS2S (eng)
          config: eng
          split: test
          revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60
        metrics:
          - type: v_measure
            value: 24.414348715238184
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (en)
          config: en
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 66.54673839946201
          - type: f1
            value: 64.61004101532164
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (en)
          config: en
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 73.11365164761264
          - type: f1
            value: 72.01684013680978
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-p2p
          name: MTEB MedrxivClusteringP2P
          config: default
          split: test
          revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
        metrics:
          - type: v_measure
            value: 31.123671999617297
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-s2s
          name: MTEB MedrxivClusteringS2S
          config: default
          split: test
          revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
        metrics:
          - type: v_measure
            value: 26.72684341430875
      - task:
          type: Reranking
        dataset:
          type: mteb/mind_small
          name: MTEB MindSmallReranking
          config: default
          split: test
          revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
        metrics:
          - type: map
            value: 29.910228061734816
          - type: mrr
            value: 30.835255982532477
      - task:
          type: Retrieval
        dataset:
          type: mteb/nfcorpus
          name: MTEB NFCorpus
          config: default
          split: test
          revision: ec0fa4fe99da2ff19ca1214b7966684033a58814
        metrics:
          - type: map_at_1
            value: 5.6770000000000005
          - type: map_at_10
            value: 13.15
          - type: map_at_100
            value: 16.205
          - type: map_at_1000
            value: 17.580000000000002
          - type: map_at_3
            value: 9.651
          - type: map_at_5
            value: 11.142000000000001
          - type: mrr_at_1
            value: 47.678
          - type: mrr_at_10
            value: 56.257000000000005
          - type: mrr_at_100
            value: 56.708000000000006
          - type: mrr_at_1000
            value: 56.751
          - type: mrr_at_3
            value: 54.128
          - type: mrr_at_5
            value: 55.181000000000004
          - type: ndcg_at_1
            value: 45.511
          - type: ndcg_at_10
            value: 35.867
          - type: ndcg_at_100
            value: 31.566
          - type: ndcg_at_1000
            value: 40.077
          - type: ndcg_at_3
            value: 41.9
          - type: ndcg_at_5
            value: 39.367999999999995
          - type: precision_at_1
            value: 47.678
          - type: precision_at_10
            value: 26.842
          - type: precision_at_100
            value: 7.991
          - type: precision_at_1000
            value: 2.0469999999999997
          - type: precision_at_3
            value: 39.938
          - type: precision_at_5
            value: 34.613
          - type: recall_at_1
            value: 5.6770000000000005
          - type: recall_at_10
            value: 17.119999999999997
          - type: recall_at_100
            value: 30.828
          - type: recall_at_1000
            value: 62.082
          - type: recall_at_3
            value: 10.456
          - type: recall_at_5
            value: 12.903999999999998
      - task:
          type: Retrieval
        dataset:
          type: mteb/nq
          name: MTEB NQ
          config: default
          split: test
          revision: b774495ed302d8c44a3a7ea25c90dbce03968f31
        metrics:
          - type: map_at_1
            value: 39.021
          - type: map_at_10
            value: 54.976
          - type: map_at_100
            value: 55.793000000000006
          - type: map_at_1000
            value: 55.811
          - type: map_at_3
            value: 50.759
          - type: map_at_5
            value: 53.429
          - type: mrr_at_1
            value: 43.308
          - type: mrr_at_10
            value: 57.118
          - type: mrr_at_100
            value: 57.69499999999999
          - type: mrr_at_1000
            value: 57.704
          - type: mrr_at_3
            value: 53.848
          - type: mrr_at_5
            value: 55.915000000000006
          - type: ndcg_at_1
            value: 43.308
          - type: ndcg_at_10
            value: 62.33800000000001
          - type: ndcg_at_100
            value: 65.61099999999999
          - type: ndcg_at_1000
            value: 65.995
          - type: ndcg_at_3
            value: 54.723
          - type: ndcg_at_5
            value: 59.026
          - type: precision_at_1
            value: 43.308
          - type: precision_at_10
            value: 9.803
          - type: precision_at_100
            value: 1.167
          - type: precision_at_1000
            value: 0.121
          - type: precision_at_3
            value: 24.334
          - type: precision_at_5
            value: 17.144000000000002
          - type: recall_at_1
            value: 39.021
          - type: recall_at_10
            value: 82.37299999999999
          - type: recall_at_100
            value: 96.21499999999999
          - type: recall_at_1000
            value: 99.02499999999999
          - type: recall_at_3
            value: 63.031000000000006
          - type: recall_at_5
            value: 72.856
      - task:
          type: Classification
        dataset:
          type: ag_news
          name: MTEB NewsClassification
          config: default
          split: test
          revision: eb185aade064a813bc0b7f42de02595523103ca4
        metrics:
          - type: accuracy
            value: 78.03289473684211
          - type: f1
            value: 77.89323745730803
      - task:
          type: PairClassification
        dataset:
          type: GEM/opusparcus
          name: MTEB OpusparcusPC (en)
          config: en
          split: test
          revision: 9e9b1f8ef51616073f47f306f7f47dd91663f86a
        metrics:
          - type: cos_sim_accuracy
            value: 99.89816700610999
          - type: cos_sim_ap
            value: 100
          - type: cos_sim_f1
            value: 99.9490575649516
          - type: cos_sim_precision
            value: 100
          - type: cos_sim_recall
            value: 99.89816700610999
          - type: dot_accuracy
            value: 99.89816700610999
          - type: dot_ap
            value: 100
          - type: dot_f1
            value: 99.9490575649516
          - type: dot_precision
            value: 100
          - type: dot_recall
            value: 99.89816700610999
          - type: euclidean_accuracy
            value: 99.89816700610999
          - type: euclidean_ap
            value: 100
          - type: euclidean_f1
            value: 99.9490575649516
          - type: euclidean_precision
            value: 100
          - type: euclidean_recall
            value: 99.89816700610999
          - type: manhattan_accuracy
            value: 99.89816700610999
          - type: manhattan_ap
            value: 100
          - type: manhattan_f1
            value: 99.9490575649516
          - type: manhattan_precision
            value: 100
          - type: manhattan_recall
            value: 99.89816700610999
          - type: max_accuracy
            value: 99.89816700610999
          - type: max_ap
            value: 100
          - type: max_f1
            value: 99.9490575649516
      - task:
          type: PairClassification
        dataset:
          type: paws-x
          name: MTEB PawsX (en)
          config: en
          split: test
          revision: 8a04d940a42cd40658986fdd8e3da561533a3646
        metrics:
          - type: cos_sim_accuracy
            value: 61.75000000000001
          - type: cos_sim_ap
            value: 59.578879568280385
          - type: cos_sim_f1
            value: 62.50861474844934
          - type: cos_sim_precision
            value: 45.46365914786967
          - type: cos_sim_recall
            value: 100
          - type: dot_accuracy
            value: 61.75000000000001
          - type: dot_ap
            value: 59.57893088951573
          - type: dot_f1
            value: 62.50861474844934
          - type: dot_precision
            value: 45.46365914786967
          - type: dot_recall
            value: 100
          - type: euclidean_accuracy
            value: 61.75000000000001
          - type: euclidean_ap
            value: 59.578755624671686
          - type: euclidean_f1
            value: 62.50861474844934
          - type: euclidean_precision
            value: 45.46365914786967
          - type: euclidean_recall
            value: 100
          - type: manhattan_accuracy
            value: 61.75000000000001
          - type: manhattan_ap
            value: 59.58504334461159
          - type: manhattan_f1
            value: 62.50861474844934
          - type: manhattan_precision
            value: 45.46365914786967
          - type: manhattan_recall
            value: 100
          - type: max_accuracy
            value: 61.75000000000001
          - type: max_ap
            value: 59.58504334461159
          - type: max_f1
            value: 62.50861474844934
      - task:
          type: Retrieval
        dataset:
          type: mteb/quora
          name: MTEB QuoraRetrieval
          config: default
          split: test
          revision: e4e08e0b7dbe3c8700f0daef558ff32256715259
        metrics:
          - type: map_at_1
            value: 70.186
          - type: map_at_10
            value: 83.875
          - type: map_at_100
            value: 84.514
          - type: map_at_1000
            value: 84.53500000000001
          - type: map_at_3
            value: 80.926
          - type: map_at_5
            value: 82.797
          - type: mrr_at_1
            value: 80.82000000000001
          - type: mrr_at_10
            value: 87.068
          - type: mrr_at_100
            value: 87.178
          - type: mrr_at_1000
            value: 87.18
          - type: mrr_at_3
            value: 86.055
          - type: mrr_at_5
            value: 86.763
          - type: ndcg_at_1
            value: 80.84
          - type: ndcg_at_10
            value: 87.723
          - type: ndcg_at_100
            value: 88.98700000000001
          - type: ndcg_at_1000
            value: 89.13499999999999
          - type: ndcg_at_3
            value: 84.821
          - type: ndcg_at_5
            value: 86.441
          - type: precision_at_1
            value: 80.84
          - type: precision_at_10
            value: 13.270000000000001
          - type: precision_at_100
            value: 1.516
          - type: precision_at_1000
            value: 0.156
          - type: precision_at_3
            value: 37.013
          - type: precision_at_5
            value: 24.37
          - type: recall_at_1
            value: 70.186
          - type: recall_at_10
            value: 94.948
          - type: recall_at_100
            value: 99.223
          - type: recall_at_1000
            value: 99.932
          - type: recall_at_3
            value: 86.57000000000001
          - type: recall_at_5
            value: 91.157
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering
          name: MTEB RedditClustering
          config: default
          split: test
          revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
        metrics:
          - type: v_measure
            value: 50.24198927949519
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering-p2p
          name: MTEB RedditClusteringP2P
          config: default
          split: test
          revision: 385e3cb46b4cfa89021f56c4380204149d0efe33
        metrics:
          - type: v_measure
            value: 61.452073078765544
      - task:
          type: Retrieval
        dataset:
          type: mteb/scidocs
          name: MTEB SCIDOCS
          config: default
          split: test
          revision: f8c2fcf00f625baaa80f62ec5bd9e1fff3b8ae88
        metrics:
          - type: map_at_1
            value: 4.972
          - type: map_at_10
            value: 12.314
          - type: map_at_100
            value: 14.333000000000002
          - type: map_at_1000
            value: 14.628
          - type: map_at_3
            value: 8.972
          - type: map_at_5
            value: 10.724
          - type: mrr_at_1
            value: 24.4
          - type: mrr_at_10
            value: 35.257
          - type: mrr_at_100
            value: 36.297000000000004
          - type: mrr_at_1000
            value: 36.363
          - type: mrr_at_3
            value: 32.267
          - type: mrr_at_5
            value: 33.942
          - type: ndcg_at_1
            value: 24.4
          - type: ndcg_at_10
            value: 20.47
          - type: ndcg_at_100
            value: 28.111000000000004
          - type: ndcg_at_1000
            value: 33.499
          - type: ndcg_at_3
            value: 19.975
          - type: ndcg_at_5
            value: 17.293
          - type: precision_at_1
            value: 24.4
          - type: precision_at_10
            value: 10.440000000000001
          - type: precision_at_100
            value: 2.136
          - type: precision_at_1000
            value: 0.34299999999999997
          - type: precision_at_3
            value: 18.733
          - type: precision_at_5
            value: 15.120000000000001
          - type: recall_at_1
            value: 4.972
          - type: recall_at_10
            value: 21.157
          - type: recall_at_100
            value: 43.335
          - type: recall_at_1000
            value: 69.652
          - type: recall_at_3
            value: 11.417
          - type: recall_at_5
            value: 15.317
      - task:
          type: STS
        dataset:
          type: mteb/sickr-sts
          name: MTEB SICK-R
          config: default
          split: test
          revision: 20a6d6f312dd54037fe07a32d58e5e168867909d
        metrics:
          - type: cos_sim_pearson
            value: 76.70295978506286
          - type: cos_sim_spearman
            value: 70.91162732446628
          - type: euclidean_pearson
            value: 73.25693688746031
          - type: euclidean_spearman
            value: 70.91162556180127
          - type: manhattan_pearson
            value: 73.27735004735767
          - type: manhattan_spearman
            value: 70.8856787022704
      - task:
          type: STS
        dataset:
          type: mteb/sts12-sts
          name: MTEB STS12
          config: default
          split: test
          revision: a0d554a64d88156834ff5ae9920b964011b16384
        metrics:
          - type: cos_sim_pearson
            value: 67.55878682646774
          - type: cos_sim_spearman
            value: 66.10824660353681
          - type: euclidean_pearson
            value: 64.93937270068541
          - type: euclidean_spearman
            value: 66.10824660353681
          - type: manhattan_pearson
            value: 64.96325555978984
          - type: manhattan_spearman
            value: 66.12052481638577
      - task:
          type: STS
        dataset:
          type: mteb/sts13-sts
          name: MTEB STS13
          config: default
          split: test
          revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
        metrics:
          - type: cos_sim_pearson
            value: 79.79979774019496
          - type: cos_sim_spearman
            value: 79.82293444619499
          - type: euclidean_pearson
            value: 79.4830436509311
          - type: euclidean_spearman
            value: 79.82293444619499
          - type: manhattan_pearson
            value: 79.49785594799296
          - type: manhattan_spearman
            value: 79.8280390479434
      - task:
          type: STS
        dataset:
          type: mteb/sts14-sts
          name: MTEB STS14
          config: default
          split: test
          revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
        metrics:
          - type: cos_sim_pearson
            value: 76.36839628231121
          - type: cos_sim_spearman
            value: 73.63809739428072
          - type: euclidean_pearson
            value: 74.93718121215906
          - type: euclidean_spearman
            value: 73.63810227650436
          - type: manhattan_pearson
            value: 74.8737197659424
          - type: manhattan_spearman
            value: 73.57534688126572
      - task:
          type: STS
        dataset:
          type: mteb/sts15-sts
          name: MTEB STS15
          config: default
          split: test
          revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
        metrics:
          - type: cos_sim_pearson
            value: 82.67482138157656
          - type: cos_sim_spearman
            value: 83.23485786963107
          - type: euclidean_pearson
            value: 82.50847772197369
          - type: euclidean_spearman
            value: 83.23485786963107
          - type: manhattan_pearson
            value: 82.48916218377576
          - type: manhattan_spearman
            value: 83.19756483500014
      - task:
          type: STS
        dataset:
          type: mteb/sts16-sts
          name: MTEB STS16
          config: default
          split: test
          revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
        metrics:
          - type: cos_sim_pearson
            value: 81.11626268793967
          - type: cos_sim_spearman
            value: 81.58184691061507
          - type: euclidean_pearson
            value: 80.65900869004938
          - type: euclidean_spearman
            value: 81.58184691061507
          - type: manhattan_pearson
            value: 80.67912306966772
          - type: manhattan_spearman
            value: 81.59957593393145
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (en-en)
          config: en-en
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 80.3140990821409
          - type: cos_sim_spearman
            value: 80.59196586367551
          - type: euclidean_pearson
            value: 80.73014029317672
          - type: euclidean_spearman
            value: 80.59196586367551
          - type: manhattan_pearson
            value: 80.5774325136987
          - type: manhattan_spearman
            value: 80.35102610546238
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (en)
          config: en
          split: test
          revision: eea2b4fe26a775864c896887d910b76a8098ad3f
        metrics:
          - type: cos_sim_pearson
            value: 68.34450491529164
          - type: cos_sim_spearman
            value: 68.79451793414492
          - type: euclidean_pearson
            value: 68.75619738499324
          - type: euclidean_spearman
            value: 68.79451793414492
          - type: manhattan_pearson
            value: 68.75256119543882
          - type: manhattan_spearman
            value: 68.81836416978547
      - task:
          type: STS
        dataset:
          type: mteb/stsbenchmark-sts
          name: MTEB STSBenchmark
          config: default
          split: test
          revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
        metrics:
          - type: cos_sim_pearson
            value: 77.95580414975612
          - type: cos_sim_spearman
            value: 77.89671867168987
          - type: euclidean_pearson
            value: 77.61352097720862
          - type: euclidean_spearman
            value: 77.89671867168987
          - type: manhattan_pearson
            value: 77.65282228135632
          - type: manhattan_spearman
            value: 77.91730533156762
      - task:
          type: STS
        dataset:
          type: PhilipMay/stsb_multi_mt
          name: MTEB STSBenchmarkMultilingualSTS (en)
          config: en
          split: test
          revision: 93d57ef91790589e3ce9c365164337a8a78b7632
        metrics:
          - type: cos_sim_pearson
            value: 77.95580421496413
          - type: cos_sim_spearman
            value: 77.89671867168987
          - type: euclidean_pearson
            value: 77.61352107168794
          - type: euclidean_spearman
            value: 77.89671867168987
          - type: manhattan_pearson
            value: 77.65282237231794
          - type: manhattan_spearman
            value: 77.91730533156762
      - task:
          type: Reranking
        dataset:
          type: mteb/scidocs-reranking
          name: MTEB SciDocsRR
          config: default
          split: test
          revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
        metrics:
          - type: map
            value: 79.22928110092924
          - type: mrr
            value: 94.46700902583257
      - task:
          type: Retrieval
        dataset:
          type: mteb/scifact
          name: MTEB SciFact
          config: default
          split: test
          revision: 0228b52cf27578f30900b9e5271d331663a030d7
        metrics:
          - type: map_at_1
            value: 56.011
          - type: map_at_10
            value: 65.544
          - type: map_at_100
            value: 66.034
          - type: map_at_1000
            value: 66.065
          - type: map_at_3
            value: 63.077000000000005
          - type: map_at_5
            value: 64.354
          - type: mrr_at_1
            value: 59
          - type: mrr_at_10
            value: 66.74900000000001
          - type: mrr_at_100
            value: 67.176
          - type: mrr_at_1000
            value: 67.203
          - type: mrr_at_3
            value: 65.056
          - type: mrr_at_5
            value: 65.956
          - type: ndcg_at_1
            value: 59
          - type: ndcg_at_10
            value: 69.95599999999999
          - type: ndcg_at_100
            value: 72.27
          - type: ndcg_at_1000
            value: 73.066
          - type: ndcg_at_3
            value: 65.837
          - type: ndcg_at_5
            value: 67.633
          - type: precision_at_1
            value: 59
          - type: precision_at_10
            value: 9.333
          - type: precision_at_100
            value: 1.053
          - type: precision_at_1000
            value: 0.11199999999999999
          - type: precision_at_3
            value: 26
          - type: precision_at_5
            value: 16.866999999999997
          - type: recall_at_1
            value: 56.011
          - type: recall_at_10
            value: 82.133
          - type: recall_at_100
            value: 92.767
          - type: recall_at_1000
            value: 99
          - type: recall_at_3
            value: 70.95
          - type: recall_at_5
            value: 75.556
      - task:
          type: PairClassification
        dataset:
          type: mteb/sprintduplicatequestions-pairclassification
          name: MTEB SprintDuplicateQuestions
          config: default
          split: test
          revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
        metrics:
          - type: cos_sim_accuracy
            value: 99.81584158415842
          - type: cos_sim_ap
            value: 94.67482871230736
          - type: cos_sim_f1
            value: 90.67201604814443
          - type: cos_sim_precision
            value: 90.94567404426559
          - type: cos_sim_recall
            value: 90.4
          - type: dot_accuracy
            value: 99.81584158415842
          - type: dot_ap
            value: 94.67482871230737
          - type: dot_f1
            value: 90.67201604814443
          - type: dot_precision
            value: 90.94567404426559
          - type: dot_recall
            value: 90.4
          - type: euclidean_accuracy
            value: 99.81584158415842
          - type: euclidean_ap
            value: 94.67482871230737
          - type: euclidean_f1
            value: 90.67201604814443
          - type: euclidean_precision
            value: 90.94567404426559
          - type: euclidean_recall
            value: 90.4
          - type: manhattan_accuracy
            value: 99.81188118811882
          - type: manhattan_ap
            value: 94.6409082219286
          - type: manhattan_f1
            value: 90.50949050949052
          - type: manhattan_precision
            value: 90.41916167664671
          - type: manhattan_recall
            value: 90.60000000000001
          - type: max_accuracy
            value: 99.81584158415842
          - type: max_ap
            value: 94.67482871230737
          - type: max_f1
            value: 90.67201604814443
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering
          name: MTEB StackExchangeClustering
          config: default
          split: test
          revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
        metrics:
          - type: v_measure
            value: 62.63494511649264
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering-p2p
          name: MTEB StackExchangeClusteringP2P
          config: default
          split: test
          revision: 815ca46b2622cec33ccafc3735d572c266efdb44
        metrics:
          - type: v_measure
            value: 37.165838327685755
      - task:
          type: Reranking
        dataset:
          type: mteb/stackoverflowdupquestions-reranking
          name: MTEB StackOverflowDupQuestions
          config: default
          split: test
          revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
        metrics:
          - type: map
            value: 51.384873075208084
          - type: mrr
            value: 52.196439181733304
      - task:
          type: Summarization
        dataset:
          type: mteb/summeval
          name: MTEB SummEval
          config: default
          split: test
          revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
        metrics:
          - type: cos_sim_pearson
            value: 32.13690355567596
          - type: cos_sim_spearman
            value: 31.38349778638125
          - type: dot_pearson
            value: 32.13689596691593
          - type: dot_spearman
            value: 31.38349778638125
      - task:
          type: Retrieval
        dataset:
          type: mteb/trec-covid
          name: MTEB TRECCOVID
          config: default
          split: test
          revision: bb9466bac8153a0349341eb1b22e06409e78ef4e
        metrics:
          - type: map_at_1
            value: 0.26
          - type: map_at_10
            value: 2.08
          - type: map_at_100
            value: 12.598
          - type: map_at_1000
            value: 30.119
          - type: map_at_3
            value: 0.701
          - type: map_at_5
            value: 1.11
          - type: mrr_at_1
            value: 96
          - type: mrr_at_10
            value: 97.167
          - type: mrr_at_100
            value: 97.167
          - type: mrr_at_1000
            value: 97.167
          - type: mrr_at_3
            value: 96.667
          - type: mrr_at_5
            value: 97.167
          - type: ndcg_at_1
            value: 91
          - type: ndcg_at_10
            value: 81.69800000000001
          - type: ndcg_at_100
            value: 62.9
          - type: ndcg_at_1000
            value: 55.245999999999995
          - type: ndcg_at_3
            value: 86.397
          - type: ndcg_at_5
            value: 84.286
          - type: precision_at_1
            value: 96
          - type: precision_at_10
            value: 87
          - type: precision_at_100
            value: 64.86
          - type: precision_at_1000
            value: 24.512
          - type: precision_at_3
            value: 90.667
          - type: precision_at_5
            value: 88.8
          - type: recall_at_1
            value: 0.26
          - type: recall_at_10
            value: 2.238
          - type: recall_at_100
            value: 15.488
          - type: recall_at_1000
            value: 51.6
          - type: recall_at_3
            value: 0.716
          - type: recall_at_5
            value: 1.151
      - task:
          type: Retrieval
        dataset:
          type: mteb/touche2020
          name: MTEB Touche2020
          config: default
          split: test
          revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f
        metrics:
          - type: map_at_1
            value: 3.376
          - type: map_at_10
            value: 13.142000000000001
          - type: map_at_100
            value: 19.763
          - type: map_at_1000
            value: 21.319
          - type: map_at_3
            value: 6.805999999999999
          - type: map_at_5
            value: 8.952
          - type: mrr_at_1
            value: 46.939
          - type: mrr_at_10
            value: 61.082
          - type: mrr_at_100
            value: 61.45
          - type: mrr_at_1000
            value: 61.468999999999994
          - type: mrr_at_3
            value: 57.483
          - type: mrr_at_5
            value: 59.931999999999995
          - type: ndcg_at_1
            value: 44.897999999999996
          - type: ndcg_at_10
            value: 32.35
          - type: ndcg_at_100
            value: 42.719
          - type: ndcg_at_1000
            value: 53.30200000000001
          - type: ndcg_at_3
            value: 37.724999999999994
          - type: ndcg_at_5
            value: 34.79
          - type: precision_at_1
            value: 46.939
          - type: precision_at_10
            value: 28.366999999999997
          - type: precision_at_100
            value: 8.429
          - type: precision_at_1000
            value: 1.557
          - type: precision_at_3
            value: 38.095
          - type: precision_at_5
            value: 33.469
          - type: recall_at_1
            value: 3.376
          - type: recall_at_10
            value: 20.164
          - type: recall_at_100
            value: 50.668
          - type: recall_at_1000
            value: 83.159
          - type: recall_at_3
            value: 8.155
          - type: recall_at_5
            value: 11.872
      - task:
          type: Classification
        dataset:
          type: mteb/toxic_conversations_50k
          name: MTEB ToxicConversationsClassification
          config: default
          split: test
          revision: edfaf9da55d3dd50d43143d90c1ac476895ae6de
        metrics:
          - type: accuracy
            value: 66.739
          - type: ap
            value: 12.17931839228834
          - type: f1
            value: 51.05383188624636
      - task:
          type: Classification
        dataset:
          type: mteb/tweet_sentiment_extraction
          name: MTEB TweetSentimentExtractionClassification
          config: default
          split: test
          revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
        metrics:
          - type: accuracy
            value: 56.72891907187323
          - type: f1
            value: 56.997614557150946
      - task:
          type: Clustering
        dataset:
          type: mteb/twentynewsgroups-clustering
          name: MTEB TwentyNewsgroupsClustering
          config: default
          split: test
          revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
        metrics:
          - type: v_measure
            value: 39.825318429345224
      - task:
          type: PairClassification
        dataset:
          type: mteb/twittersemeval2015-pairclassification
          name: MTEB TwitterSemEval2015
          config: default
          split: test
          revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
        metrics:
          - type: cos_sim_accuracy
            value: 83.65619598259522
          - type: cos_sim_ap
            value: 66.17412885183877
          - type: cos_sim_f1
            value: 63.09125656951745
          - type: cos_sim_precision
            value: 57.63858577040594
          - type: cos_sim_recall
            value: 69.68337730870712
          - type: dot_accuracy
            value: 83.65619598259522
          - type: dot_ap
            value: 66.17413621964548
          - type: dot_f1
            value: 63.09125656951745
          - type: dot_precision
            value: 57.63858577040594
          - type: dot_recall
            value: 69.68337730870712
          - type: euclidean_accuracy
            value: 83.65619598259522
          - type: euclidean_ap
            value: 66.17412836413126
          - type: euclidean_f1
            value: 63.09125656951745
          - type: euclidean_precision
            value: 57.63858577040594
          - type: euclidean_recall
            value: 69.68337730870712
          - type: manhattan_accuracy
            value: 83.5548667819038
          - type: manhattan_ap
            value: 66.07998834521334
          - type: manhattan_f1
            value: 62.96433419721092
          - type: manhattan_precision
            value: 59.14676559239509
          - type: manhattan_recall
            value: 67.30870712401055
          - type: max_accuracy
            value: 83.65619598259522
          - type: max_ap
            value: 66.17413621964548
          - type: max_f1
            value: 63.09125656951745
      - task:
          type: PairClassification
        dataset:
          type: mteb/twitterurlcorpus-pairclassification
          name: MTEB TwitterURLCorpus
          config: default
          split: test
          revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
        metrics:
          - type: cos_sim_accuracy
            value: 88.55706911941631
          - type: cos_sim_ap
            value: 85.20971331546805
          - type: cos_sim_f1
            value: 77.28446050593702
          - type: cos_sim_precision
            value: 74.16135881104033
          - type: cos_sim_recall
            value: 80.6821681552202
          - type: dot_accuracy
            value: 88.55706911941631
          - type: dot_ap
            value: 85.2097154112633
          - type: dot_f1
            value: 77.28446050593702
          - type: dot_precision
            value: 74.16135881104033
          - type: dot_recall
            value: 80.6821681552202
          - type: euclidean_accuracy
            value: 88.55706911941631
          - type: euclidean_ap
            value: 85.20971719214488
          - type: euclidean_f1
            value: 77.28446050593702
          - type: euclidean_precision
            value: 74.16135881104033
          - type: euclidean_recall
            value: 80.6821681552202
          - type: manhattan_accuracy
            value: 88.52020025614158
          - type: manhattan_ap
            value: 85.17569799117058
          - type: manhattan_f1
            value: 77.27157773040933
          - type: manhattan_precision
            value: 72.79286638077734
          - type: manhattan_recall
            value: 82.33754234678165
          - type: max_accuracy
            value: 88.55706911941631
          - type: max_ap
            value: 85.20971719214488
          - type: max_f1
            value: 77.28446050593702
      - task:
          type: Clustering
        dataset:
          type: jinaai/cities_wiki_clustering
          name: MTEB WikiCitiesClustering
          config: default
          split: test
          revision: ddc9ee9242fa65332597f70e967ecc38b9d734fa
        metrics:
          - type: v_measure
            value: 85.63474850264893