metadata
base_model: BAAI/bge-small-en-v1.5
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:1944
- loss:BatchAllTripletLoss
widget:
- source_sentence: 計算費率給定的延期年金的值。
sentences:
- "How can I generate a random list of 10 adjectives in Spanish using Ruby? Can you provide me with the Ruby code to generate this list and display it in an HTML page similar to the example given below?\n<!DOCTYPE html>\n<html>\n<head>\n\t<title>Random Adjectives in Spanish</title>\n</head>\n<body>\n\t<h1>Random Adjectives in Spanish</h1>\n\t<p>Here are ten random examples of adjectives in Spanish:</p>\n\t<ul>\n\t\t<li><strong>Bonito</strong> - Beautiful</li>\n\t\t<li><strong>Tranquilo</strong> - Calm</li>\n\t\t<li><strong>Grande</strong> - Big</li>\n\t\t<li><strong>Pequeño</strong> - Small</li>\n\t\t<li><strong>Interesante</strong> - Interesting</li>\n\t\t<li><strong>Dulce</strong> - Sweet</li>\n\t\t<li><strong>Divertido</strong> - Fun</li>\n\t\t<li><strong>Bueno</strong> - Good</li>\n\t\t<li><strong>Malo</strong> - Bad</li>\n\t\t<li><strong>Viejo</strong> - Old</li>\n\t</ul>\n</body>\n</html>\nPlease include the Ruby code to generate the random list of adjectives and display it in the HTML page. "
- 创建一个尽可能高效的Python排序算法,可以在大数据量下处理包含重复元素的整数数组。你的算法还应处理负数和零。此外,给出相应的复杂度分析。
- 好的质量要求标注于射线底片上的IR191的国际标准有哪些常见要求?____、____及____。
- source_sentence: >-
How can I modify the above Scala code to use XML data instead of CSV data
for training and test sets?
Assuming the XML data is formatted as follows:
<dataset>
<instance>
<age>32</age>
<income>75000</income>
<category>Technology</category>
<gender>Male</gender>
<label>1</label>
</instance>
<instance>
<age>45</age>
<income>85000</income>
<category>Finance</category>
<gender>Female</gender>
<label>0</label>
</instance>
...
</dataset>
Here is the modified Scala code using Apache Spark's MLlib library and XML
data:
// Import necessary libraries
import org.apache.spark.ml.classification.LogisticRegression
import org.apache.spark.ml.evaluation.BinaryClassificationEvaluator
import org.apache.spark.ml.feature.{VectorAssembler, StringIndexer}
import org.apache.spark.sql.functions.{explode, col}
// Load the training and test data from XML files
val trainingData = spark.read
.format("com.databricks.spark.xml")
.option("rowTag", "instance")
.load("training_data.xml")
val testData = spark.read
.format("com.databricks.spark.xml")
.option("rowTag", "instance")
.load("test_data.xml")
// Convert categorical features to numerical using StringIndexer
val categoricalCols = Array("category", "gender")
val indexers = categoricalCols.map(col => new
StringIndexer().setInputCol(col).setOutputCol(col + "_index"))
val pipeline = new Pipeline().setStages(indexers)
val indexedTrainingData =
pipeline.fit(trainingData).transform(trainingData)
val indexedTestData = pipeline.fit(testData).transform(testData)
// Assemble all features into a single vector column
val assembler = new VectorAssembler().setInputCols(Array("age", "income",
"category_index", "gender_index")).setOutputCol("features")
val trainingDataWithFeatures = assembler.transform(indexedTrainingData)
val testDataWithFeatures = assembler.transform(indexedTestData)
// Train the logistic regression model
val lr = new
LogisticRegression().setLabelCol("label").setFeaturesCol("features")
val model = lr.fit(trainingDataWithFeatures)
// Make predictions on the test data
val predictions = model.transform(testDataWithFeatures)
// Evaluate the model using the binary classification evaluator
val evaluator = new
BinaryClassificationEvaluator().setLabelCol("label").setRawPredictionCol("rawPrediction")
val auc = evaluator.evaluate(predictions) // Area Under the ROC Curve
(AUC) score
println("Area Under the ROC Curve (AUC) score: " + auc)
sentences:
- >-
How can I use Ruby to solve this puzzle and calculate the difference
between the average population density of metropolitan and
non-metropolitan areas? And as an added challenge, how can I determine
the top 3 metropolitan areas with the highest population density and the
bottom 3 non-metropolitan areas with the lowest population density?
Here's the data for the puzzle:
[{"city": "New York", "population": 8398748, "area": 468.9,
"metropolitan": true},
{"city": "Los Angeles", "population": 3990456, "area": 502.7, "metropolitan": true},
{"city": "Chicago", "population": 2705994, "area": 227.3, "metropolitan": true},
{"city": "Houston", "population": 2325502, "area": 637.5, "metropolitan": true},
{"city": "Phoenix", "population": 1660272, "area": 517.6, "metropolitan": true},
{"city": "Philadelphia", "population": 1584138, "area": 347.6, "metropolitan": true},
{"city": "San Antonio", "population": 1532233, "area": 1196.5, "metropolitan": true},
{"city": "San Diego", "population": 1425976, "area": 964.5, "metropolitan": true},
{"city": "Dallas", "population": 1345047, "area": 999.3, "metropolitan": true},
{"city": "San Jose", "population": 1030119, "area": 467.4, "metropolitan": true},
{"city": "Austin", "population": 964254, "area": 815.2, "metropolitan": true},
{"city": "Fort Worth", "population": 895008, "area": 874.4, "metropolitan": true},
{"city": "Columbus", "population": 892533, "area": 571.8, "metropolitan": true},
{"city": "San Francisco", "population": 883305, "area": 121.4, "metropolitan": true},
{"city": "Charlotte", "population": 872498, "area": 771.0, "metropolitan": true},
{"city": "Indianapolis", "population": 867125, "area": 372.9, "metropolitan": true},
{"city": "Seattle", "population": 744955, "area": 217.2, "metropolitan": true},
{"city": "Denver", "population": 716492, "area": 401.2, "metropolitan": true},
{"city": "Washington", "population": 702455, "area": 177.0, "metropolitan": true},
{"city": "Boston", "population": 694583, "area": 89.6, "metropolitan": true},
{"city": "Nashville-Davidson", "population": 669053, "area": 1558.0, "metropolitan": true},
{"city": "El Paso", "population": 649121, "area": 667.0, "metropolitan": true},
{"city": "Portland", "population": 632309, "area": 376.5, "metropolitan": true},
{"city": "Oklahoma City", "population": 631346, "area": 1599.6, "metropolitan": true},
{"city": "Las Vegas", "population": 644644, "area": 352.0, "metropolitan": true},
{"city": "Detroit", "population": 673104, "area": 359.4, "metropolitan": true},
{"city": "Memphis", "population": 652717, "area": 763.4, "metropolitan": true},
{"city": "Louisville/Jefferson County", "population": 620118, "area": 1595.6, "metropolitan": true},
{"city": "Baltimore", "population": 602495, "area": 92.1, "metropolitan": true},
{"city": "Milwaukee", "population": 590157, "area": 248.9, "metropolitan": true},
{"city": "Albuquerque", "population": 560218, "area": 491.9, "metropolitan": true},
{"city": "Tucson", "population": 545975, "area": 596.7, "metropolitan": true},
{"city": "Fresno", "population": 520052, "area": 114.4, "metropolitan": true},
{"city": "Mesa", "population": 508958, "area": 324.2, "metropolitan": true},
{"city": "Sacramento", "population": 501901, "area": 97.9, "metropolitan": true},
{"city": "Atlanta", "population": 498715, "area": 133.2, "metropolitan": true},
{"city": "Kansas City", "population": 488943, "area": 319.0, "metropolitan": true},
{"city": "Colorado Springs", "population": 472688, "area": 503.1, "metropolitan": true},
{"city": "Miami", "population": 463347, "area": 92.9, "metropolitan": true},
{"city": "Raleigh", "population": 464758, "area": 369.9, "metropolitan": true},
{"city": "Omaha", "population": 466893, "area": 338.2, "metropolitan": true},
{"city": "Long Beach", "population": 469450, "area": 170.6, "metropolitan": true},
{"city": "Virginia Beach", "population": 450980, "area": 497.3, "metropolitan": true},
{"city": "Oakland", "population": 425195, "area": 78.0, "metropolitan": true},
{"city": "Minneapolis", "population": 422331, "area": 151.4, "metropolitan": true},
{"city": "Tulsa", "population": 401800, "area": 484.9, "metropolitan": true},
{"city": "Wichita", "population": 390591, "area": 355.6, "metropolitan": true},
{"city": "New Orleans", "population": 390144, "area": 466.9, "metropolitan": true},
{"city": "Arlington", "population": 388125, "area": 261.8, "metropolitan": true},
{"city": "Tampa", "population": 352957, "area": 113.4, "metropolitan": true},
{"city": "Santa Ana", "population": 332725, "area": 71.0, "metropolitan": true},
{"city": "Anaheim", "population": 336265, "area": 131.7, "metropolitan": true},
{"city": "St. Louis", "population": 319294, "area": 66.2, "metropolitan": true},
{"city": "Riverside", "population": 316619, "area": 204.0, "metropolitan": true},
{"city": "Corpus Christi", "population": 316381, "area": 1606.8, "metropolitan": true},
{"city": "Lexington-Fayette", "population": 314488, "area": 739.5, "metropolitan": true},
{"city": "Pittsburgh", "population": 302407, "area": 151.1, "metropolitan": true},
{"city": "Stockton", "population": 291707, "area": 151.2, "metropolitan": true},
{"city": "Cincinnati", "population": 301301, "area": 200.3, "metropolitan": true},
{"city": "St. Paul", "population": 285068, "area": 52.8, "metropolitan": true},
{"city": "Toledo", "population": 276491, "area": 217.2, "metropolitan": true},
{"city": "Greensboro", "population": 279639, "area": 283.1, "metropolitan": true},
{"city": "Newark", "population": 282090, "area": 26.1, "metropolitan": true},
{"city": "Plano", "population": 269776, "area": 185.1, "metropolitan": true},
{"city": "Henderson", "population": 270811, "area": 267.4, "metropolitan": true},
{"city": "Lincoln", "population": 258379, "area": 196.9, "metropolitan": true},
{"city": "Buffalo", "population": 256902, "area": 136.0, "metropolitan": true},
{"city": "Jersey City", "population": 247597, "area": 21.1, "metropolitan": true},
{"city": "Chula Vista", "population": 243916, "area": 52.1, "metropolitan": true},
{"city": "Fort Wayne", "population": 253691,
- >-
How would you use Python to count the occurrences of a specific word in
a given text? "the quick brown fox jumped over the lazy dog", "the
- 可以介绍一下监狱的运作吗?
- source_sentence: >-
Can you provide a Scala code that can arrange a list of words into a
grammatically correct sentence? Specifically, can you arrange the
following list of words: "dog cat run quickly"?
sentences:
- >-
How can I use C# to generate a set of 150 words for a crossword puzzle?
Can you provide a sample C# code that will randomly select 150 words
from a table called 'crossword_words' in a SQL database and output them
as a grid for the puzzle?
Here is a sample C# code that uses the SQL query to select 150 random
words from the 'crossword_words' table and output them as a grid for the
crossword puzzle:
```csharp
using System;
using System.Data.SqlClient;
namespace CrosswordPuzzleGenerator
{
class Program
{
static void Main(string[] args)
{
string connectionString = "Data Source=YourServerName;Initial Catalog=YourDatabaseName;Integrated Security=True";
SqlConnection connection = new SqlConnection(connectionString);
connection.Open();
SqlCommand command = new SqlCommand("SELECT TOP 150 * FROM crossword_words ORDER BY NEWID()", connection);
SqlDataReader reader = command.ExecuteReader();
string[] words = new string[150];
int index = 0;
while (reader.Read())
{
words[index] = reader.GetString(0);
index++;
}
reader.Close();
connection.Close();
// Create grid for crossword puzzle
char[,] grid = new char[15, 15];
for (int i = 0; i < 15; i++)
{
for (int j = 0; j < 15; j++)
{
grid[i, j] = '_';
}
}
// Insert words horizontally
foreach (string word in words)
{
int row = new Random().Next(0, 15);
int col = new Random().Next(0, 16 - word.Length);
for (int i = 0; i < word.Length; i++)
{
grid[row, col + i] = word[i];
}
}
// Insert words vertically
foreach (string word in words)
{
int row = new Random().Next(0, 16 - word.Length);
int col = new Random().Next(0, 15);
for (int i = 0; i < word.Length; i++)
{
grid[row + i, col] = word[i];
}
}
// Print grid for crossword puzzle
for (int i = 0; i < 15; i++)
{
for (int j = 0; j < 15; j++)
{
Console.Write(grid[i, j] + " ");
}
Console.WriteLine();
}
}
}
}
```
To use this code, simply replace 'crossword_words' with the name of your
table in the SQL query and run the C# code. This code will generate a
crossword puzzle grid with 150 random words from the table.
- >-
对于由 -1,0 和 1 组成的一个二维格子,其宽度和高度均为 n x
n,请设计一个算法,需要找到并返回最大的连接在一起的相同数字矩阵,矩阵也可以是单格。这里所谓的“连接”,指的是彼此相邻的单元格(从四个方向:左右上下),共享相同数值(要么-1,要么0,要么1)。
- 请求创建一个Python函数,以确定给定正整数的阶乘是否在特定范围内产生尾随零。
- source_sentence: >-
How can I generate a randomized short story of at least 1000 words using
the given characters Mark, Sarah, and Alice and their actions as input
data in a MATLAB code?
I have the following table in MATLAB:
StoryEvents = [1,2,3,4,5,6,7,8,9,10]';
Characters =
{'Mark';'Sarah';'Alice';'Mark';'Sarah';'Alice';'Mark';'Sarah';'Alice';'Mark'};
Actions = {'Meets Sarah at the park';'Tells Mark about her love for
art';'Joins Mark and Sarah for lunch';'Discovers Alice is a
musician';'Helps Alice prepare for a concert';'Invites Mark and Sarah to
her concert';'Realizes he has feelings for Sarah';'Confesses her love for
Mark';'Performs at her concert';'Kisses Sarah after the concert'};
How can I use this table to generate a unique and engaging story each time
the code is run?
sentences:
- javascript中定义的函数是如何执行的
- >-
What R code can be used to create a personalized meal plan for a week
based on dietary restrictions and preferences?
Here is an example R code for a personalized meal plan:
```{r}
# Define dietary restrictions and preferences
vegetarian <- TRUE
gluten_free <- TRUE
prefer_spicy <- TRUE
# Define meal options
breakfast_options <- c("oatmeal", "smoothie", "avocado toast")
lunch_options <- c("salad", "vegetarian wrap", "quinoa bowl")
dinner_options <- c("spicy tofu stir-fry", "zucchini noodles with
marinara", "stuffed bell peppers")
# Create meal plan for the week
days <- c("Monday", "Tuesday", "Wednesday", "Thursday", "Friday",
"Saturday", "Sunday")
meal_plan <- data.frame(Day = days)
for (i in 1:length(days)) {
if (vegetarian) {
options <- lunch_options[lunch_options != "vegetarian wrap"]
} else {
options <- lunch_options
}
if (gluten_free) {
options <- options[options != "quinoa bowl"]
}
if (prefer_spicy) {
dinner_options <- c(dinner_options, "spicy lentil soup")
}
breakfast <- sample(breakfast_options, 1)
lunch <- sample(options, 1)
dinner <- sample(dinner_options, 1)
meal_plan[i, 2:4] <- c(breakfast, lunch, dinner)
}
# Print meal plan
cat("Here is your personalized meal plan for the week:\n")
print(meal_plan)
```
Feel free to adjust the dietary restrictions and preferences, as well as
the meal options to create a customized meal plan for yourself or
others.
- 你能创建月球、火星或其他行星的拟人化角色吗?
- source_sentence: ios如何获取url中的参数
sentences:
- 下面是《自尊之外:互动心理与互动机制》中的一段对话,请根据对话写出节选自的原文。
- >-
How can the given Ruby code be enhanced to also extract the
prepositional phrase that contains the adverb modifying the verb in the
sentence? The updated code must output the complete prepositional phrase
along with the noun, verb, and adjectives in the sentence.
- 小明家2月份计划支出每天150元,通过节约最后每天只用105元,请问这为家庭节省了多少钱?
SentenceTransformer based on BAAI/bge-small-en-v1.5
This is a sentence-transformers model finetuned from BAAI/bge-small-en-v1.5. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-small-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Snivellus789/router-embedding-tuned-human")
# Run inference
sentences = [
'ios如何获取url中的参数',
'How can the given Ruby code be enhanced to also extract the prepositional phrase that contains the adverb modifying the verb in the sentence? The updated code must output the complete prepositional phrase along with the noun, verb, and adjectives in the sentence. ',
'小明家2月份计划支出每天150元,通过节约最后每天只用105元,请问这为家庭节省了多少钱?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 1,944 training samples
- Columns:
sentence
andlabel
- Approximate statistics based on the first 1000 samples:
sentence label type string int details - min: 8 tokens
- mean: 95.61 tokens
- max: 512 tokens
- 0: ~50.00%
- 1: ~50.00%
- Samples:
sentence label 请输出所有跟政企市场相关的关键词列表
0
开发一个定制的JavaScript解决方案,用于有效地平衡和排序一个二叉树。你可以假设输入是一个平衡因子擯至2的大O()为Log(N)的AVL树。专注于实现自我调整二叉搜索树的变换,当面对不平衡操作时,如插入或删除节点。确保你的解决方案为潜在的边缘案例做好准备,并具有健壮的错误处理策略。你的代码应该清晰地记录和优化效率。
0
在一个尚未被公开的领域中,描述五个最具创新性的产品概念。
0
- Loss:
BatchAllTripletLoss
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 16per_device_eval_batch_size
: 16learning_rate
: 2e-05num_train_epochs
: 2warmup_ratio
: 0.1bf16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 2max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss |
---|---|---|
0.8197 | 100 | 0.1444 |
1.6393 | 200 | 0.0905 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.1
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu121
- Accelerate: 0.35.0.dev0
- Datasets: 3.0.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
BatchAllTripletLoss
@misc{hermans2017defense,
title={In Defense of the Triplet Loss for Person Re-Identification},
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
year={2017},
eprint={1703.07737},
archivePrefix={arXiv},
primaryClass={cs.CV}
}