metadata
license: apache-2.0
base_model: hustvl/yolos-tiny
tags:
- generated_from_trainer
model-index:
- name: yolos_tiny_cppe5
results: []
yolos_tiny_cppe5
This model is a fine-tuned version of hustvl/yolos-tiny on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.4769
- Map: 0.2369
- Map 50: 0.4764
- Map 75: 0.2036
- Map Small: 0.0622
- Map Medium: 0.1865
- Map Large: 0.3823
- Mar 1: 0.252
- Mar 10: 0.4074
- Mar 100: 0.4319
- Mar Small: 0.1509
- Mar Medium: 0.3767
- Mar Large: 0.6136
- Map Coverall: 0.5152
- Mar 100 Coverall: 0.6559
- Map Face Shield: 0.2343
- Mar 100 Face Shield: 0.4139
- Map Gloves: 0.1228
- Mar 100 Gloves: 0.3531
- Map Goggles: 0.0851
- Mar 100 Goggles: 0.3492
- Map Mask: 0.2274
- Mar 100 Mask: 0.3876
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Map | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1 | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Coverall | Mar 100 Coverall | Map Face Shield | Mar 100 Face Shield | Map Gloves | Mar 100 Gloves | Map Goggles | Mar 100 Goggles | Map Mask | Mar 100 Mask |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 107 | 2.5534 | 0.0212 | 0.0548 | 0.0127 | 0.0022 | 0.0215 | 0.0247 | 0.0315 | 0.1027 | 0.1335 | 0.0154 | 0.0869 | 0.1869 | 0.0973 | 0.4833 | 0.0 | 0.0 | 0.0017 | 0.0795 | 0.0 | 0.0 | 0.0069 | 0.1049 |
No log | 2.0 | 214 | 1.9299 | 0.0583 | 0.1303 | 0.0481 | 0.0079 | 0.0491 | 0.0667 | 0.0918 | 0.1953 | 0.2297 | 0.0622 | 0.1634 | 0.321 | 0.2377 | 0.6248 | 0.0047 | 0.0557 | 0.0136 | 0.1951 | 0.0 | 0.0 | 0.0354 | 0.2729 |
No log | 3.0 | 321 | 1.8008 | 0.1034 | 0.2254 | 0.0863 | 0.0325 | 0.0665 | 0.1524 | 0.1293 | 0.2535 | 0.2762 | 0.0827 | 0.2032 | 0.4117 | 0.3862 | 0.6387 | 0.0374 | 0.2139 | 0.0221 | 0.2237 | 0.004 | 0.0185 | 0.0675 | 0.2862 |
No log | 4.0 | 428 | 1.7458 | 0.1315 | 0.2993 | 0.0971 | 0.0235 | 0.0923 | 0.1878 | 0.155 | 0.288 | 0.3098 | 0.1008 | 0.2266 | 0.4624 | 0.4306 | 0.6248 | 0.0658 | 0.243 | 0.0317 | 0.2348 | 0.0186 | 0.1462 | 0.1109 | 0.3 |
1.9048 | 5.0 | 535 | 1.6490 | 0.1536 | 0.318 | 0.131 | 0.0217 | 0.1098 | 0.2361 | 0.1812 | 0.3191 | 0.3354 | 0.1118 | 0.2609 | 0.4973 | 0.4576 | 0.6333 | 0.1022 | 0.2797 | 0.0424 | 0.2732 | 0.0164 | 0.1831 | 0.1494 | 0.3076 |
1.9048 | 6.0 | 642 | 1.6512 | 0.1523 | 0.3205 | 0.1221 | 0.051 | 0.106 | 0.2372 | 0.1858 | 0.3351 | 0.3554 | 0.1458 | 0.2777 | 0.5244 | 0.4583 | 0.6347 | 0.1093 | 0.3291 | 0.0393 | 0.2634 | 0.0254 | 0.2092 | 0.1294 | 0.3404 |
1.9048 | 7.0 | 749 | 1.6405 | 0.1705 | 0.3598 | 0.1408 | 0.0318 | 0.1136 | 0.2735 | 0.1954 | 0.3431 | 0.363 | 0.1131 | 0.2875 | 0.5416 | 0.4906 | 0.6473 | 0.1067 | 0.2899 | 0.062 | 0.2871 | 0.049 | 0.2692 | 0.144 | 0.3213 |
1.9048 | 8.0 | 856 | 1.5674 | 0.182 | 0.3877 | 0.1515 | 0.0409 | 0.116 | 0.3008 | 0.2016 | 0.3615 | 0.3824 | 0.134 | 0.3048 | 0.5631 | 0.4816 | 0.6392 | 0.135 | 0.3405 | 0.0779 | 0.2897 | 0.053 | 0.3138 | 0.1624 | 0.3289 |
1.9048 | 9.0 | 963 | 1.5283 | 0.1833 | 0.3957 | 0.1433 | 0.0508 | 0.1252 | 0.3039 | 0.1968 | 0.3665 | 0.3842 | 0.153 | 0.3108 | 0.5585 | 0.4828 | 0.6338 | 0.1405 | 0.3506 | 0.0797 | 0.2915 | 0.0448 | 0.3062 | 0.1688 | 0.3391 |
1.2541 | 10.0 | 1070 | 1.5406 | 0.1856 | 0.4022 | 0.1528 | 0.0435 | 0.1258 | 0.3201 | 0.2126 | 0.369 | 0.3899 | 0.1387 | 0.3155 | 0.5741 | 0.4733 | 0.6149 | 0.1592 | 0.3468 | 0.0782 | 0.3107 | 0.0566 | 0.3262 | 0.1608 | 0.3511 |
1.2541 | 11.0 | 1177 | 1.5453 | 0.1888 | 0.4095 | 0.1501 | 0.039 | 0.125 | 0.3194 | 0.217 | 0.3681 | 0.3857 | 0.1313 | 0.312 | 0.5834 | 0.4797 | 0.6248 | 0.1735 | 0.3646 | 0.0892 | 0.3067 | 0.0426 | 0.3046 | 0.1589 | 0.328 |
1.2541 | 12.0 | 1284 | 1.5515 | 0.1945 | 0.4124 | 0.1618 | 0.0377 | 0.133 | 0.3157 | 0.2164 | 0.376 | 0.3955 | 0.1191 | 0.3252 | 0.5786 | 0.4857 | 0.6338 | 0.2002 | 0.4114 | 0.0859 | 0.2991 | 0.034 | 0.3031 | 0.1666 | 0.3302 |
1.2541 | 13.0 | 1391 | 1.5000 | 0.213 | 0.4303 | 0.1734 | 0.057 | 0.1642 | 0.3239 | 0.2274 | 0.3974 | 0.4203 | 0.1508 | 0.3634 | 0.5897 | 0.5014 | 0.655 | 0.1972 | 0.4139 | 0.1203 | 0.3214 | 0.0513 | 0.3538 | 0.1949 | 0.3573 |
1.2541 | 14.0 | 1498 | 1.5179 | 0.212 | 0.4446 | 0.1808 | 0.061 | 0.1564 | 0.3302 | 0.2366 | 0.3881 | 0.4078 | 0.1696 | 0.3314 | 0.5911 | 0.4999 | 0.6455 | 0.1938 | 0.3937 | 0.0978 | 0.3071 | 0.0618 | 0.32 | 0.2069 | 0.3724 |
1.0966 | 15.0 | 1605 | 1.5160 | 0.2007 | 0.4314 | 0.1576 | 0.0521 | 0.1509 | 0.3183 | 0.228 | 0.3788 | 0.4033 | 0.1551 | 0.3415 | 0.5683 | 0.4914 | 0.6248 | 0.1755 | 0.357 | 0.0971 | 0.3326 | 0.0571 | 0.3338 | 0.1823 | 0.3684 |
1.0966 | 16.0 | 1712 | 1.5079 | 0.2086 | 0.4465 | 0.1721 | 0.0684 | 0.1587 | 0.3153 | 0.2337 | 0.388 | 0.4079 | 0.1482 | 0.3496 | 0.5812 | 0.501 | 0.6586 | 0.1977 | 0.3823 | 0.098 | 0.3196 | 0.0565 | 0.3246 | 0.1896 | 0.3542 |
1.0966 | 17.0 | 1819 | 1.4974 | 0.2118 | 0.4499 | 0.1734 | 0.0544 | 0.1693 | 0.3428 | 0.2278 | 0.3943 | 0.4161 | 0.1558 | 0.3586 | 0.5918 | 0.4988 | 0.6396 | 0.1874 | 0.3911 | 0.1115 | 0.3393 | 0.0635 | 0.3431 | 0.1981 | 0.3676 |
1.0966 | 18.0 | 1926 | 1.4773 | 0.2197 | 0.4623 | 0.1769 | 0.0673 | 0.1595 | 0.3665 | 0.2372 | 0.3931 | 0.4164 | 0.1421 | 0.3552 | 0.5993 | 0.5107 | 0.6482 | 0.1955 | 0.3835 | 0.1155 | 0.3438 | 0.0657 | 0.3492 | 0.2109 | 0.3573 |
0.9762 | 19.0 | 2033 | 1.4700 | 0.216 | 0.4467 | 0.1827 | 0.0547 | 0.1631 | 0.3497 | 0.2417 | 0.4011 | 0.4197 | 0.1429 | 0.3643 | 0.5905 | 0.5114 | 0.6473 | 0.2026 | 0.4038 | 0.1128 | 0.3424 | 0.0502 | 0.3292 | 0.2029 | 0.376 |
0.9762 | 20.0 | 2140 | 1.4874 | 0.2261 | 0.4636 | 0.1917 | 0.0736 | 0.1824 | 0.3585 | 0.2441 | 0.4055 | 0.4277 | 0.1594 | 0.3724 | 0.6 | 0.5053 | 0.6437 | 0.2166 | 0.4152 | 0.1176 | 0.354 | 0.0728 | 0.36 | 0.2181 | 0.3658 |
0.9762 | 21.0 | 2247 | 1.4772 | 0.2287 | 0.4676 | 0.1977 | 0.0758 | 0.1783 | 0.3689 | 0.2489 | 0.4049 | 0.4286 | 0.1614 | 0.375 | 0.6036 | 0.5164 | 0.6523 | 0.213 | 0.4038 | 0.1187 | 0.3518 | 0.0829 | 0.36 | 0.2126 | 0.3751 |
0.9762 | 22.0 | 2354 | 1.4694 | 0.2307 | 0.474 | 0.1994 | 0.0601 | 0.1829 | 0.3732 | 0.2433 | 0.4055 | 0.4308 | 0.1541 | 0.3747 | 0.6088 | 0.5113 | 0.6532 | 0.2248 | 0.4241 | 0.125 | 0.35 | 0.0725 | 0.3431 | 0.2198 | 0.3836 |
0.9762 | 23.0 | 2461 | 1.4841 | 0.2326 | 0.4664 | 0.1999 | 0.0663 | 0.18 | 0.3724 | 0.2505 | 0.4105 | 0.4331 | 0.1583 | 0.3796 | 0.6108 | 0.5129 | 0.655 | 0.2293 | 0.4127 | 0.1196 | 0.3473 | 0.0784 | 0.3677 | 0.2227 | 0.3831 |
0.8859 | 24.0 | 2568 | 1.4781 | 0.2333 | 0.4787 | 0.2016 | 0.0602 | 0.1865 | 0.3746 | 0.2511 | 0.4085 | 0.4309 | 0.1545 | 0.3784 | 0.6038 | 0.5124 | 0.6532 | 0.2266 | 0.4203 | 0.1237 | 0.3549 | 0.0717 | 0.3431 | 0.2319 | 0.3831 |
0.8859 | 25.0 | 2675 | 1.4762 | 0.2316 | 0.4702 | 0.1997 | 0.0617 | 0.1786 | 0.3777 | 0.2515 | 0.4047 | 0.4297 | 0.1552 | 0.3706 | 0.611 | 0.5123 | 0.6559 | 0.2186 | 0.4127 | 0.1186 | 0.354 | 0.0806 | 0.3492 | 0.2278 | 0.3769 |
0.8859 | 26.0 | 2782 | 1.4792 | 0.2347 | 0.4784 | 0.1984 | 0.065 | 0.1847 | 0.3775 | 0.25 | 0.4099 | 0.4322 | 0.1614 | 0.3757 | 0.6124 | 0.5122 | 0.6545 | 0.2249 | 0.4177 | 0.1225 | 0.35 | 0.0832 | 0.3492 | 0.2306 | 0.3898 |
0.8859 | 27.0 | 2889 | 1.4775 | 0.2374 | 0.4772 | 0.2062 | 0.062 | 0.1872 | 0.3824 | 0.2528 | 0.4071 | 0.4319 | 0.1494 | 0.3746 | 0.6188 | 0.516 | 0.6577 | 0.2374 | 0.4203 | 0.1206 | 0.3509 | 0.0845 | 0.3446 | 0.2285 | 0.3862 |
0.8859 | 28.0 | 2996 | 1.4754 | 0.2365 | 0.4742 | 0.2018 | 0.0613 | 0.1862 | 0.3804 | 0.2531 | 0.4076 | 0.4319 | 0.1487 | 0.3773 | 0.6152 | 0.5138 | 0.6554 | 0.2343 | 0.4152 | 0.1212 | 0.3527 | 0.0822 | 0.3477 | 0.2309 | 0.3884 |
0.8259 | 29.0 | 3103 | 1.4768 | 0.2373 | 0.4754 | 0.2035 | 0.0625 | 0.1869 | 0.3833 | 0.253 | 0.4077 | 0.4323 | 0.1509 | 0.3771 | 0.6145 | 0.5152 | 0.6559 | 0.2346 | 0.4139 | 0.123 | 0.3545 | 0.0853 | 0.3492 | 0.2282 | 0.388 |
0.8259 | 30.0 | 3210 | 1.4769 | 0.2369 | 0.4764 | 0.2036 | 0.0622 | 0.1865 | 0.3823 | 0.252 | 0.4074 | 0.4319 | 0.1509 | 0.3767 | 0.6136 | 0.5152 | 0.6559 | 0.2343 | 0.4139 | 0.1228 | 0.3531 | 0.0851 | 0.3492 | 0.2274 | 0.3876 |
Framework versions
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1