|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
base_model: roberta-base |
|
model-index: |
|
- name: run-2 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# run-2 |
|
|
|
This model is a fine-tuned version of [roberta-base](https://huggingface.co./roberta-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.1449 |
|
- Accuracy: 0.75 |
|
- Precision: 0.7115 |
|
- Recall: 0.7093 |
|
- F1: 0.7103 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| |
|
| 0.9838 | 1.0 | 50 | 0.8621 | 0.645 | 0.6536 | 0.6130 | 0.6124 | |
|
| 0.7134 | 2.0 | 100 | 0.8124 | 0.7 | 0.6628 | 0.6421 | 0.6483 | |
|
| 0.4911 | 3.0 | 150 | 0.8571 | 0.7 | 0.6726 | 0.6314 | 0.6361 | |
|
| 0.3104 | 4.0 | 200 | 0.8228 | 0.76 | 0.7298 | 0.7367 | 0.7294 | |
|
| 0.1942 | 5.0 | 250 | 1.1132 | 0.76 | 0.7282 | 0.7031 | 0.7119 | |
|
| 0.1409 | 6.0 | 300 | 1.2218 | 0.685 | 0.6516 | 0.6560 | 0.6524 | |
|
| 0.0976 | 7.0 | 350 | 1.3648 | 0.715 | 0.6984 | 0.7044 | 0.6946 | |
|
| 0.0791 | 8.0 | 400 | 1.5985 | 0.745 | 0.7183 | 0.7113 | 0.7124 | |
|
| 0.0647 | 9.0 | 450 | 1.8884 | 0.725 | 0.6818 | 0.6761 | 0.6785 | |
|
| 0.0275 | 10.0 | 500 | 1.8639 | 0.725 | 0.6979 | 0.7008 | 0.6958 | |
|
| 0.0329 | 11.0 | 550 | 1.8831 | 0.72 | 0.6816 | 0.6869 | 0.6838 | |
|
| 0.0169 | 12.0 | 600 | 2.1426 | 0.73 | 0.6864 | 0.6776 | 0.6794 | |
|
| 0.0072 | 13.0 | 650 | 2.2483 | 0.725 | 0.7187 | 0.7054 | 0.6968 | |
|
| 0.0203 | 14.0 | 700 | 2.2901 | 0.735 | 0.6986 | 0.6885 | 0.6921 | |
|
| 0.0093 | 15.0 | 750 | 2.3134 | 0.725 | 0.6830 | 0.6666 | 0.6723 | |
|
| 0.0089 | 16.0 | 800 | 2.1598 | 0.73 | 0.6919 | 0.6860 | 0.6885 | |
|
| 0.0061 | 17.0 | 850 | 2.0879 | 0.75 | 0.7129 | 0.7132 | 0.7125 | |
|
| 0.0024 | 18.0 | 900 | 2.1285 | 0.745 | 0.7062 | 0.7071 | 0.7049 | |
|
| 0.0043 | 19.0 | 950 | 2.1386 | 0.74 | 0.7001 | 0.7003 | 0.6985 | |
|
| 0.0028 | 20.0 | 1000 | 2.1449 | 0.75 | 0.7115 | 0.7093 | 0.7103 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.25.1 |
|
- Pytorch 1.13.1+cu116 |
|
- Tokenizers 0.13.2 |
|
|