SkyR's picture
Librarian Bot: Add base_model information to model (#1)
cf937db
|
raw
history blame
3.25 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
base_model: albert-base-v2
model-index:
  - name: albert-base-ours-run-3
    results: []

albert-base-ours-run-3

This model is a fine-tuned version of albert-base-v2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.4381
  • Accuracy: 0.7
  • Precision: 0.6579
  • Recall: 0.6558
  • F1: 0.6568

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.9876 1.0 200 0.9367 0.64 0.6707 0.5623 0.5425
0.7553 2.0 400 0.7936 0.66 0.6269 0.6298 0.6105
0.556 3.0 600 0.9257 0.71 0.6759 0.6504 0.6563
0.3871 4.0 800 0.9893 0.63 0.5882 0.5985 0.5876
0.2446 5.0 1000 1.1867 0.695 0.6582 0.6563 0.6566
0.1502 6.0 1200 1.6108 0.71 0.6708 0.6523 0.6585
0.1049 7.0 1400 2.4882 0.645 0.6030 0.5597 0.5649
0.0764 8.0 1600 2.0064 0.715 0.6798 0.6602 0.6651
0.032 9.0 1800 2.6447 0.655 0.5913 0.5774 0.5727
0.0177 10.0 2000 2.2460 0.675 0.6290 0.6287 0.6287
0.0153 11.0 2200 2.3537 0.69 0.6524 0.6407 0.6408
0.006 12.0 2400 2.4205 0.695 0.6582 0.6448 0.6486
0.0045 13.0 2600 2.3032 0.68 0.6394 0.6314 0.6287
0.0038 14.0 2800 2.3506 0.685 0.6388 0.6370 0.6367
0.0034 15.0 3000 2.3750 0.7 0.6590 0.6558 0.6573
0.0019 16.0 3200 2.4289 0.72 0.6819 0.6723 0.6763
0.0016 17.0 3400 2.4470 0.725 0.6892 0.6788 0.6830
0.0002 18.0 3600 2.4374 0.71 0.6700 0.6626 0.6657
0.0002 19.0 3800 2.4353 0.7 0.6579 0.6558 0.6568
0.0002 20.0 4000 2.4381 0.7 0.6579 0.6558 0.6568

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.13.0+cu116
  • Tokenizers 0.13.2