librarian-bot's picture
Librarian Bot: Add base_model information to model
9462ced
|
raw
history blame
3.25 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
base_model: albert-base-v2
model-index:
  - name: albert-base-ours-run-2
    results: []

albert-base-ours-run-2

This model is a fine-tuned version of albert-base-v2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.2462
  • Accuracy: 0.695
  • Precision: 0.6550
  • Recall: 0.6529
  • F1: 0.6539

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.999 1.0 200 0.9155 0.615 0.5590 0.5590 0.5524
0.7736 2.0 400 0.8488 0.6 0.5639 0.5689 0.5256
0.5836 3.0 600 0.8760 0.67 0.6259 0.6158 0.6191
0.4153 4.0 800 1.0050 0.675 0.6356 0.6212 0.5974
0.3188 5.0 1000 1.2033 0.655 0.6254 0.5977 0.5991
0.2335 6.0 1200 1.3407 0.625 0.5955 0.6039 0.5937
0.1752 7.0 1400 1.4246 0.72 0.6846 0.6815 0.6820
0.1056 8.0 1600 1.9654 0.69 0.6589 0.6251 0.6311
0.0696 9.0 1800 1.9376 0.715 0.6908 0.6632 0.6627
0.0352 10.0 2000 1.9970 0.72 0.6880 0.6784 0.6817
0.0227 11.0 2200 2.1449 0.705 0.6901 0.6641 0.6679
0.0199 12.0 2400 2.2213 0.72 0.6891 0.6685 0.6749
0.0077 13.0 2600 2.1500 0.69 0.6729 0.6704 0.6647
0.0067 14.0 2800 2.1780 0.69 0.6632 0.6651 0.6621
0.0034 15.0 3000 2.1759 0.71 0.6800 0.6786 0.6788
0.0013 16.0 3200 2.2139 0.71 0.6760 0.6721 0.6735
0.0005 17.0 3400 2.2282 0.7 0.6606 0.6593 0.6599
0.0003 18.0 3600 2.2257 0.7 0.6606 0.6593 0.6599
0.0003 19.0 3800 2.2492 0.695 0.6550 0.6529 0.6539
0.0002 20.0 4000 2.2462 0.695 0.6550 0.6529 0.6539

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.13.0+cu116
  • Tokenizers 0.13.2