See axolotl config
axolotl version: 0.6.0
base_model: NousResearch/Meta-Llama-3.1-8B
# Automatically upload checkpoint and final model to HF
hub_model_id: Siguiente-ia/PLEX-0.1-8b
load_in_8bit: false
load_in_4bit: false
strict: false
chat_template: chatml
datasets:
- path: Siguiente-ia/plex-v0.2
type: chat_template
field_messages: messages
dataset_prepared_path: last_run_prepared
val_set_size: 0.05
output_dir: ./outputs/out
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 8
micro_batch_size: 1
num_epochs: 1
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 2e-5
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 100
evals_per_epoch: 2
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
pad_token: <|end_of_text|>
PLEX-0.1-8b
This model is a fine-tuned version of NousResearch/Meta-Llama-3.1-8B on the Siguiente-ia/plex-v0.2 dataset. It achieves the following results on the evaluation set:
- Loss: 0.6582
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.8808 | 0.0019 | 1 | 0.8060 |
0.6044 | 0.5003 | 269 | 0.6582 |
Framework versions
- Transformers 4.47.1
- Pytorch 2.3.1+cu121
- Datasets 3.1.0
- Tokenizers 0.21.0
- Downloads last month
- 3
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for Siguiente-ia/PLEX-0.1-8b
Base model
NousResearch/Meta-Llama-3.1-8B