|
--- |
|
license: mit |
|
base_model: facebook/bart-large-xsum |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: bart-large-xsum-finetuned-sst2 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bart-large-xsum-finetuned-sst2 |
|
|
|
This model is a fine-tuned version of [facebook/bart-large-xsum](https://huggingface.co./facebook/bart-large-xsum) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4333 |
|
- Rouge1: 0.5389 |
|
- Rouge2: 0.2841 |
|
- Rougel: 0.4406 |
|
- Rougelsum: 0.4935 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 16 |
|
- total_train_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| |
|
| 0.3028 | 1.0 | 920 | 0.3135 | 0.5331 | 0.2844 | 0.4417 | 0.4908 | |
|
| 0.2301 | 2.0 | 1841 | 0.3304 | 0.5371 | 0.2878 | 0.4393 | 0.4936 | |
|
| 0.1626 | 3.0 | 2762 | 0.3395 | 0.5415 | 0.2907 | 0.4503 | 0.4978 | |
|
| 0.112 | 4.0 | 3683 | 0.3898 | 0.5415 | 0.2830 | 0.4406 | 0.4952 | |
|
| 0.0747 | 5.0 | 4600 | 0.4333 | 0.5389 | 0.2841 | 0.4406 | 0.4935 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.1 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.17.1 |
|
- Tokenizers 0.15.2 |
|
|