|
--- |
|
license: mit |
|
base_model: facebook/bart-large-cnn |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: bart-large-cnn-finetuned-sst2 |
|
results: [] |
|
datasets: |
|
- samsum |
|
language: |
|
- en |
|
pipeline_tag: summarization |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bart-large-cnn-finetuned-sst2 |
|
|
|
This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co./facebook/bart-large-cnn) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4287 |
|
- Rouge1: 0.4065 |
|
- Rouge2: 0.1979 |
|
- Rougel: 0.3084 |
|
- Rougelsum: 0.3750 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 16 |
|
- total_train_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| |
|
| 0.2977 | 1.0 | 920 | 0.3094 | 0.4036 | 0.2071 | 0.3097 | 0.3746 | |
|
| 0.2253 | 2.0 | 1841 | 0.3163 | 0.4067 | 0.2109 | 0.3130 | 0.3769 | |
|
| 0.159 | 3.0 | 2762 | 0.3258 | 0.4108 | 0.2101 | 0.3163 | 0.3796 | |
|
| 0.1091 | 4.0 | 3683 | 0.3680 | 0.4060 | 0.2006 | 0.3069 | 0.3750 | |
|
| 0.0723 | 5.0 | 4600 | 0.4287 | 0.4065 | 0.1979 | 0.3084 | 0.3750 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.1 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.17.1 |
|
- Tokenizers 0.15.2 |