File size: 2,146 Bytes
13c35c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: training-7
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# training-7

This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co./bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0602
- Accuracy: 0.9878
- Precision: 0.9909
- Recall: 0.9842
- F1: 0.9875

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| No log        | 0.5   | 131  | 0.0592          | 0.9856   | 0.9954    | 0.9752 | 0.9852 |
| No log        | 1.0   | 262  | 0.0695          | 0.9789   | 0.9977    | 0.9594 | 0.9781 |
| 0.1477        | 1.49  | 393  | 0.0648          | 0.9822   | 0.9977    | 0.9661 | 0.9817 |
| 0.1477        | 1.99  | 524  | 0.0657          | 0.9833   | 0.9954    | 0.9707 | 0.9829 |
| 0.0555        | 2.49  | 655  | 0.0611          | 0.9856   | 0.9954    | 0.9752 | 0.9852 |
| 0.0555        | 2.99  | 786  | 0.0599          | 0.9889   | 0.9932    | 0.9842 | 0.9887 |
| 0.0243        | 3.49  | 917  | 0.0574          | 0.9878   | 0.9909    | 0.9842 | 0.9875 |
| 0.0243        | 3.98  | 1048 | 0.0602          | 0.9878   | 0.9909    | 0.9842 | 0.9875 |


### Framework versions

- Transformers 4.33.1
- Pytorch 2.2.0.dev20230913+cu121
- Tokenizers 0.13.3