BERT
Collection
5 items
•
Updated
This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
More information needed
More information needed
More information needed
The following hyperparameters were used during training:
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
No log | 0.5 | 131 | 0.0592 | 0.9856 | 0.9954 | 0.9752 | 0.9852 |
No log | 1.0 | 262 | 0.0695 | 0.9789 | 0.9977 | 0.9594 | 0.9781 |
0.1477 | 1.49 | 393 | 0.0648 | 0.9822 | 0.9977 | 0.9661 | 0.9817 |
0.1477 | 1.99 | 524 | 0.0657 | 0.9833 | 0.9954 | 0.9707 | 0.9829 |
0.0555 | 2.49 | 655 | 0.0611 | 0.9856 | 0.9954 | 0.9752 | 0.9852 |
0.0555 | 2.99 | 786 | 0.0599 | 0.9889 | 0.9932 | 0.9842 | 0.9887 |
0.0243 | 3.49 | 917 | 0.0574 | 0.9878 | 0.9909 | 0.9842 | 0.9875 |
0.0243 | 3.98 | 1048 | 0.0602 | 0.9878 | 0.9909 | 0.9842 | 0.9875 |
Base model
google-bert/bert-base-uncased