Sharpaxis's picture
Update README.md
e607c90 verified
---
library_name: transformers
license: mit
base_model: xlm-roberta-base
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: xlmr_test3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# XLMR-Cross-Lingual-NER
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co./xlm-roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1420
- F1: 0.8621
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.2896 | 1.0 | 787 | 0.1600 | 0.8287 |
| 0.1374 | 2.0 | 1574 | 0.1421 | 0.8560 |
| 0.1017 | 3.0 | 2361 | 0.1420 | 0.8621 |
### Framework versions
- Transformers 4.46.3
- Pytorch 2.4.0
- Datasets 3.1.0
- Tokenizers 0.20.3