Sharpaxis's picture
Update README.md
9827b30 verified
---
library_name: peft
license: mit
base_model: FaceBookAI/roberta-base
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: Lora_model2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Sharpaxis/RoBERTa_Movie_Review_LoRA
This model is a fine-tuned version of [FaceBookAI/roberta-base](https://huggingface.co./FaceBookAI/roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3046
- F1: 0.8737
- Acc: 0.8734
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 | Acc |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
| 0.5074 | 1.0 | 534 | 0.3279 | 0.8635 | 0.8565 |
| 0.3222 | 2.0 | 1068 | 0.3106 | 0.8742 | 0.8771 |
| 0.3153 | 3.0 | 1602 | 0.3046 | 0.8737 | 0.8734 |
### Framework versions
- PEFT 0.14.0
- Transformers 4.46.2
- Pytorch 2.5.1
- Datasets 3.1.0
- Tokenizers 0.20.3