Edit model card

videomae-base-finetuned-ucf101-relevancedetection-surgical

This model is a fine-tuned version of MCG-NJU/videomae-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0913
  • Accuracy: 0.9828

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 7370

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.2187 0.0501 369 2.3587 0.5141
0.2004 1.0501 738 0.3347 0.8992
0.0702 2.0501 1107 0.1048 0.9657
0.0174 3.0501 1476 0.1231 0.9637
0.0463 4.0501 1845 0.5684 0.9012
0.0008 5.0501 2214 1.7179 0.7702
0.022 6.0501 2583 0.4177 0.8972
0.0055 7.0501 2952 0.0563 0.9738
0.0303 8.0501 3321 0.2138 0.9657
0.001 9.0501 3690 0.4224 0.9133
0.0004 10.0501 4059 0.2029 0.9577
0.0003 11.0501 4428 0.4289 0.9375
0.0002 12.0501 4797 0.5915 0.9214
0.0001 13.0501 5166 0.1033 0.9718
0.0001 14.0501 5535 0.1252 0.9677
0.0002 15.0501 5904 0.1371 0.9617
0.0001 16.0501 6273 0.0273 0.9919
0.0002 17.0501 6642 0.0450 0.9899
0.0001 18.0501 7011 0.0284 0.9899
0.0001 19.0487 7370 0.0224 0.9940

Framework versions

  • Transformers 4.45.0.dev0
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
4
Safetensors
Model size
86.2M params
Tensor type
F32
·
Inference API
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Shangong/videomae-base-finetuned-ucf101-relevancedetection-surgical

Finetuned
(386)
this model