Bert-Sentiment-Fa
This model is a fine-tuned version of HooshvareLab/bert-fa-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4804
- Accuracy: 0.8667
- F1: 0.8055
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-06
- train_batch_size: 16
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
No log | 1.0 | 143 | 0.6056 | 0.7765 | 0.6647 |
No log | 2.0 | 286 | 0.4282 | 0.8549 | 0.7825 |
No log | 3.0 | 429 | 0.4119 | 0.8588 | 0.7949 |
0.5089 | 4.0 | 572 | 0.4091 | 0.8667 | 0.8102 |
0.5089 | 5.0 | 715 | 0.4226 | 0.8627 | 0.7988 |
0.5089 | 6.0 | 858 | 0.4333 | 0.8627 | 0.8031 |
0.203 | 7.0 | 1001 | 0.4500 | 0.8627 | 0.7972 |
0.203 | 8.0 | 1144 | 0.4540 | 0.8667 | 0.8073 |
0.203 | 9.0 | 1287 | 0.4765 | 0.8667 | 0.8055 |
0.203 | 10.0 | 1430 | 0.4804 | 0.8667 | 0.8055 |
Framework versions
- Transformers 4.33.0
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.13.3
- Downloads last month
- 0
Model tree for SeyedHosseini360/Bert-Sentiment-Fa
Base model
HooshvareLab/bert-fa-base-uncased