|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- SenseLLM/ReflectionSeq-GPT |
|
- SenseLLM/ReflectionSeq-DS |
|
language: |
|
- en |
|
--- |
|
## ReflectionCoder: Learning from Reflection Sequence for Enhanced One-off Code Generation |
|
|
|
<p align="center"> |
|
<a href="https://arxiv.org/abs/2405.17057">📄 Paper</a> • |
|
<a href="https://github.com/SenseLLM/ReflectionCoder">🏠 Repo</a> • |
|
<a href="https://huggingface.co./SenseLLM/ReflectionCoder-DS-33B">🤖 Models</a> • |
|
<a href="https://huggingface.co./datasets/SenseLLM/ReflectionSeq-GPT">📚 Datasets </a> |
|
</p> |
|
|
|
## Introduction |
|
ReflectionCoder is a novel approach that effectively leverages reflection sequences constructed by integrating compiler feedback to improve one-off code generation performance. Please refer to our paper and repo for more details! |
|
|
|
![](method.png) |
|
|
|
<hr> |
|
|
|
## Models |
|
|
|
| Model | Checkpoint | Size | HumanEval (+) | MBPP (+) | License| |
|
|:-------|:------------|:------|:---------------|:----------|:--------| |
|
| ReflectionCoder-CL-7B | 🤗 [HF Link](https://huggingface.co./SenseLLM/ReflectionCoder-CL-7B) | 7B | 75.0 (68.9) | 72.2 (61.4) | [Llama2](https://ai.meta.com/llama/license/) | |
|
| ReflectionCoder-CL-34B | 🤗 [HF Link](https://huggingface.co./SenseLLM/ReflectionCoder-CL-34B) | 34B | 70.7 (66.5) | 68.4 (56.6) | [Llama2](https://ai.meta.com/llama/license/) | |
|
| ReflectionCoder-DS-6.7B | 🤗 [HF Link](https://huggingface.co./SenseLLM/ReflectionCoder-DS-6.7B) | 6.7B | 80.5 (74.4) | 81.5 (69.6) | [DeepSeek](https://github.com/deepseek-ai/DeepSeek-Coder/blob/main/LICENSE-MODEL) | |
|
| ReflectionCoder-DS-33B | 🤗 [HF Link](https://huggingface.co./SenseLLM/ReflectionCoder-DS-33B) | 33B | 82.9 (76.8) | 84.1 (72.0) | [DeepSeek](https://github.com/deepseek-ai/DeepSeek-Coder/blob/main/LICENSE-MODEL) | |
|
|
|
## Datasets |
|
|
|
| Dataset | Link | License | |
|
|:-------------------|:----------------|:----------------------------------------------| |
|
| ReflectionSeq-GPT | 🤗 [HF Link](https://huggingface.co./datasets/SenseLLM/ReflectionSeq-GPT) | [License](LICENSE) | |
|
| ReflectionSeq-DS | 🤗 [HF Link](https://huggingface.co./datasets/SenseLLM/ReflectionSeq-DS) | [License](LICENSE) | |
|
|
|
|
|
## How to Use |
|
|
|
#### Chat Format |
|
Following chat templates of most models, we use two special tokens to wrap the message of user and assistant, *i.e.*, ``<|user|>``, ``<|assistant|>``, and ``<|endofmessage|>``. Furthermore, we use two special tokens to wrap the content of different blocks, *i.e.*, ``<|text|>`` and ``<|endofblock|>``. You can use the following template to prompt our ReflectionCoder. |
|
|
|
```python |
|
<|user|><|text|> |
|
Your Instruction |
|
<|endofblock|><|endofmessage|><|assistant|> |
|
``` |
|
|
|
#### Inference Code |
|
Please refer to our [GitHub Repo](https://github.com/SenseLLM/ReflectionCoder) for more technical details. |
|
|
|
## Citation |
|
|
|
If you find this repo useful for your research, please kindly cite our paper: |
|
``` |
|
@misc{ren2024reflectioncoder, |
|
title={ReflectionCoder: Learning from Reflection Sequence for Enhanced One-off Code Generation}, |
|
author={Houxing Ren and Mingjie Zhan and Zhongyuan Wu and Aojun Zhou and Junting Pan and Hongsheng Li}, |
|
year={2024}, |
|
eprint={2405.17057}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
## Acknowledgments |
|
|
|
We thank the following amazing projects that truly inspired us: |
|
|
|
- [CodeLlama](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/) |
|
- [DeepSeek-Coder](https://github.com/deepseek-ai/DeepSeek-Coder) |
|
- [WizardCoder](https://github.com/nlpxucan/WizardLM/tree/main/WizardCoder) |
|
- [Evol-CodeAlpaca-v1](https://huggingface.co./datasets/theblackcat102/evol-codealpaca-v1) |
|
- [MagiCoder](https://github.com/ise-uiuc/magicoder/tree/main) |
|
- [EvalPlus](https://github.com/evalplus/evalplus) |
|
- [OpenCoderInterpreter](https://github.com/OpenCodeInterpreter/OpenCodeInterpreter/tree/main) |