segformer-finetuned-tt-1000-2k

This model is a fine-tuned version of nvidia/mit-b0 on the Saumya-Mundra/text255 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1042
  • Mean Iou: 0.4902
  • Mean Accuracy: 0.9804
  • Overall Accuracy: 0.9804
  • Accuracy Text: nan
  • Accuracy No Text: 0.9804
  • Iou Text: 0.0
  • Iou No Text: 0.9804

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-07
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 1337
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: polynomial
  • training_steps: 20000

Training results

Training Loss Epoch Step Accuracy No Text Accuracy Text Iou No Text Iou Text Validation Loss Mean Accuracy Mean Iou Overall Accuracy
0.3719 1.0 125 0.9684 nan 0.9684 0.0 0.1986 0.9684 0.4842 0.9684
0.2348 2.0 250 0.9864 nan 0.9864 0.0 0.1336 0.9864 0.4932 0.9864
0.183 3.0 375 0.9747 nan 0.9747 0.0 0.1268 0.9747 0.4874 0.9747
0.1485 4.0 500 0.9802 nan 0.9802 0.0 0.1114 0.9802 0.4901 0.9802
0.1429 5.0 625 0.9757 nan 0.9757 0.0 0.1122 0.9757 0.4878 0.9757
0.1367 6.0 750 0.9834 nan 0.9834 0.0 0.1075 0.9834 0.4917 0.9834
0.1333 7.0 875 0.9793 nan 0.9793 0.0 0.1048 0.9793 0.4897 0.9793
0.1199 8.0 1000 0.9776 nan 0.9776 0.0 0.1009 0.9776 0.4888 0.9776
0.1201 9.0 1125 0.9806 nan 0.9806 0.0 0.1000 0.9806 0.4903 0.9806
0.1111 10.0 1250 0.9807 nan 0.9807 0.0 0.0998 0.9807 0.4904 0.9807
0.1128 11.0 1375 0.9792 nan 0.9792 0.0 0.0984 0.9792 0.4896 0.9792
0.1055 12.0 1500 0.9835 nan 0.9835 0.0 0.0941 0.9835 0.4918 0.9835
0.0988 13.0 1625 0.9815 nan 0.9815 0.0 0.0972 0.9815 0.4907 0.9815
0.0983 14.0 1750 0.9843 nan 0.9843 0.0 0.0947 0.9843 0.4921 0.9843
0.1045 15.0 1875 0.9794 nan 0.9794 0.0 0.0960 0.9794 0.4897 0.9794
0.1002 16.0 2000 0.9790 nan 0.9790 0.0 0.0976 0.9790 0.4895 0.9790
0.1072 17.0 2125 0.9776 nan 0.9776 0.0 0.1006 0.9776 0.4888 0.9776
0.1046 18.0 2250 0.9800 nan 0.9800 0.0 0.0938 0.9800 0.4900 0.9800
0.1072 19.0 2375 0.9800 nan 0.9800 0.0 0.0962 0.9800 0.4900 0.9800
0.1127 20.0 2500 0.9840 nan 0.9840 0.0 0.0918 0.9840 0.4920 0.9840
0.1017 21.0 2625 0.9782 nan 0.9782 0.0 0.0940 0.9782 0.4891 0.9782
0.0961 22.0 2750 0.9784 nan 0.9784 0.0 0.0964 0.9784 0.4892 0.9784
0.0951 23.0 2875 0.9821 nan 0.9821 0.0 0.0940 0.9821 0.4910 0.9821
0.0938 24.0 3000 0.9836 nan 0.9836 0.0 0.1005 0.9836 0.4918 0.9836
0.0949 25.0 3125 0.9803 nan 0.9803 0.0 0.1003 0.9803 0.4901 0.9803
0.0949 26.0 3250 0.9815 nan 0.9815 0.0 0.1015 0.9815 0.4908 0.9815
0.0949 27.0 3375 0.9780 nan 0.9780 0.0 0.0970 0.9780 0.4890 0.9780
0.0883 28.0 3500 0.9779 nan 0.9779 0.0 0.0967 0.9779 0.4890 0.9779
0.0846 29.0 3625 0.9849 nan 0.9849 0.0 0.0973 0.9849 0.4924 0.9849
0.0842 30.0 3750 0.9820 nan 0.9820 0.0 0.0946 0.9820 0.4910 0.9820
0.0814 31.0 3875 0.9819 nan 0.9819 0.0 0.0936 0.9819 0.4909 0.9819
0.0813 32.0 4000 0.9813 nan 0.9813 0.0 0.0938 0.9813 0.4906 0.9813
0.0817 33.0 4125 0.9812 nan 0.9812 0.0 0.0946 0.9812 0.4906 0.9812
0.0836 34.0 4250 0.9775 nan 0.9775 0.0 0.0940 0.9775 0.4888 0.9775
0.0836 35.0 4375 0.9811 nan 0.9811 0.0 0.0915 0.9811 0.4906 0.9811
0.0785 36.0 4500 0.9816 nan 0.9816 0.0 0.0951 0.9816 0.4908 0.9816
0.0746 37.0 4625 0.9757 nan 0.9757 0.0 0.0951 0.9757 0.4879 0.9757
0.0819 38.0 4750 0.9800 nan 0.9800 0.0 0.0952 0.9800 0.4900 0.9800
0.0731 39.0 4875 0.9797 nan 0.9797 0.0 0.0922 0.9797 0.4899 0.9797
0.0745 40.0 5000 0.9798 nan 0.9798 0.0 0.0939 0.9798 0.4899 0.9798
0.0755 41.0 5125 0.9802 nan 0.9802 0.0 0.0946 0.9802 0.4901 0.9802
0.0692 42.0 5250 0.9757 nan 0.9757 0.0 0.0976 0.9757 0.4879 0.9757
0.0798 43.0 5375 0.9804 nan 0.9804 0.0 0.0988 0.9804 0.4902 0.9804
0.076 44.0 5500 0.9798 nan 0.9798 0.0 0.0965 0.9798 0.4899 0.9798
0.0757 45.0 5625 0.9823 nan 0.9823 0.0 0.0914 0.9823 0.4912 0.9823
0.0702 46.0 5750 0.9781 nan 0.9781 0.0 0.0935 0.9781 0.4890 0.9781
0.0765 47.0 5875 0.9809 nan 0.9809 0.0 0.0966 0.9809 0.4905 0.9809
0.0724 48.0 6000 0.9833 nan 0.9833 0.0 0.0937 0.9833 0.4916 0.9833
0.0713 49.0 6125 0.9762 nan 0.9762 0.0 0.1017 0.9762 0.4881 0.9762
0.0677 50.0 6250 0.9804 nan 0.9804 0.0 0.0932 0.9804 0.4902 0.9804
0.0715 51.0 6375 0.9781 nan 0.9781 0.0 0.0975 0.9781 0.4891 0.9781
0.0713 52.0 6500 0.9833 nan 0.9833 0.0 0.0945 0.9833 0.4917 0.9833
0.0695 53.0 6625 0.9819 nan 0.9819 0.0 0.0951 0.9819 0.4910 0.9819
0.0648 54.0 6750 0.9825 nan 0.9825 0.0 0.0965 0.9825 0.4912 0.9825
0.0694 55.0 6875 0.9809 nan 0.9809 0.0 0.0946 0.9809 0.4905 0.9809
0.0665 56.0 7000 0.9824 nan 0.9824 0.0 0.1007 0.9824 0.4912 0.9824
0.0635 57.0 7125 0.9831 nan 0.9831 0.0 0.0971 0.9831 0.4916 0.9831
0.0628 58.0 7250 0.9785 nan 0.9785 0.0 0.1002 0.9785 0.4893 0.9785
0.0668 59.0 7375 0.9813 nan 0.9813 0.0 0.0960 0.9813 0.4906 0.9813
0.0648 60.0 7500 0.9796 nan 0.9796 0.0 0.0939 0.9796 0.4898 0.9796
0.064 61.0 7625 0.9786 nan 0.9786 0.0 0.0947 0.9786 0.4893 0.9786
0.0636 62.0 7750 0.9788 nan 0.9788 0.0 0.0985 0.9788 0.4894 0.9788
0.0653 63.0 7875 0.9812 nan 0.9812 0.0 0.0914 0.9812 0.4906 0.9812
0.0594 64.0 8000 0.9782 nan 0.9782 0.0 0.0966 0.9782 0.4891 0.9782
0.0608 65.0 8125 0.9794 nan 0.9794 0.0 0.0961 0.9794 0.4897 0.9794
0.0625 66.0 8250 0.9814 nan 0.9814 0.0 0.0954 0.9814 0.4907 0.9814
0.0646 67.0 8375 0.9801 nan 0.9801 0.0 0.0981 0.9801 0.4900 0.9801
0.0634 68.0 8500 0.9823 nan 0.9823 0.0 0.0996 0.9823 0.4911 0.9823
0.0611 69.0 8625 0.9810 nan 0.9810 0.0 0.1007 0.9810 0.4905 0.9810
0.0599 70.0 8750 0.9793 nan 0.9793 0.0 0.0929 0.9793 0.4896 0.9793
0.0583 71.0 8875 0.9825 nan 0.9825 0.0 0.0988 0.9825 0.4913 0.9825
0.0596 72.0 9000 0.9790 nan 0.9790 0.0 0.0955 0.9790 0.4895 0.9790
0.0598 73.0 9125 0.9800 nan 0.9800 0.0 0.1025 0.9800 0.4900 0.9800
0.0623 74.0 9250 0.9836 nan 0.9836 0.0 0.0997 0.9836 0.4918 0.9836
0.0637 75.0 9375 0.9782 nan 0.9782 0.0 0.0971 0.9782 0.4891 0.9782
0.0627 76.0 9500 0.9806 nan 0.9806 0.0 0.0934 0.9806 0.4903 0.9806
0.0566 77.0 9625 0.9830 nan 0.9830 0.0 0.1016 0.9830 0.4915 0.9830
0.0585 78.0 9750 0.9817 nan 0.9817 0.0 0.0915 0.9817 0.4908 0.9817
0.0574 79.0 9875 0.9814 nan 0.9814 0.0 0.0939 0.9814 0.4907 0.9814
0.0579 80.0 10000 0.9797 nan 0.9797 0.0 0.0996 0.9797 0.4899 0.9797
0.0564 81.0 10125 0.9801 nan 0.9801 0.0 0.0988 0.9801 0.4901 0.9801
0.0614 82.0 10250 0.9836 nan 0.9836 0.0 0.1011 0.9836 0.4918 0.9836
0.0556 83.0 10375 0.9817 nan 0.9817 0.0 0.0984 0.9817 0.4908 0.9817
0.0582 84.0 10500 0.9811 nan 0.9811 0.0 0.0964 0.9811 0.4906 0.9811
0.057 85.0 10625 0.9821 nan 0.9821 0.0 0.0956 0.9821 0.4911 0.9821
0.0552 86.0 10750 0.9804 nan 0.9804 0.0 0.1000 0.9804 0.4902 0.9804
0.059 87.0 10875 0.9828 nan 0.9828 0.0 0.0990 0.9828 0.4914 0.9828
0.0547 88.0 11000 0.9811 nan 0.9811 0.0 0.0959 0.9811 0.4905 0.9811
0.0532 89.0 11125 0.9819 nan 0.9819 0.0 0.0980 0.9819 0.4909 0.9819
0.0578 90.0 11250 0.9829 nan 0.9829 0.0 0.0954 0.9829 0.4915 0.9829
0.0552 91.0 11375 0.9817 nan 0.9817 0.0 0.1013 0.9817 0.4909 0.9817
0.0584 92.0 11500 0.9802 nan 0.9802 0.0 0.0986 0.9802 0.4901 0.9802
0.0528 93.0 11625 0.9806 nan 0.9806 0.0 0.1009 0.9806 0.4903 0.9806
0.0566 94.0 11750 0.9802 nan 0.9802 0.0 0.0983 0.9802 0.4901 0.9802
0.0541 95.0 11875 0.9806 nan 0.9806 0.0 0.1032 0.9806 0.4903 0.9806
0.0577 96.0 12000 0.9800 nan 0.9800 0.0 0.1030 0.9800 0.4900 0.9800
0.0567 97.0 12125 0.9796 nan 0.9796 0.0 0.1039 0.9796 0.4898 0.9796
0.056 98.0 12250 0.9789 nan 0.9789 0.0 0.1020 0.9789 0.4894 0.9789
0.0517 99.0 12375 0.9819 nan 0.9819 0.0 0.1004 0.9819 0.4910 0.9819
0.051 100.0 12500 0.9826 nan 0.9826 0.0 0.0990 0.9826 0.4913 0.9826
0.0523 101.0 12625 0.9826 nan 0.9826 0.0 0.0984 0.9826 0.4913 0.9826
0.0521 102.0 12750 0.9799 nan 0.9799 0.0 0.0987 0.9799 0.4900 0.9799
0.0518 103.0 12875 0.9819 nan 0.9819 0.0 0.1065 0.9819 0.4909 0.9819
0.0521 104.0 13000 0.9809 nan 0.9809 0.0 0.1052 0.9809 0.4904 0.9809
0.0556 105.0 13125 0.9818 nan 0.9818 0.0 0.1006 0.9818 0.4909 0.9818
0.0544 106.0 13250 0.9809 nan 0.9809 0.0 0.1045 0.9809 0.4904 0.9809
0.0549 107.0 13375 0.9823 nan 0.9823 0.0 0.1014 0.9823 0.4912 0.9823
0.054 108.0 13500 0.9809 nan 0.9809 0.0 0.1026 0.9809 0.4904 0.9809
0.0526 109.0 13625 0.9837 nan 0.9837 0.0 0.1052 0.9837 0.4918 0.9837
0.0524 110.0 13750 0.9830 nan 0.9830 0.0 0.0987 0.9830 0.4915 0.9830
0.0487 111.0 13875 0.1028 0.4900 0.9801 0.9801 nan 0.9801 0.0 0.9801
0.054 112.0 14000 0.1070 0.4915 0.9829 0.9829 nan 0.9829 0.0 0.9829
0.0531 113.0 14125 0.1046 0.4903 0.9806 0.9806 nan 0.9806 0.0 0.9806
0.0478 114.0 14250 0.1036 0.4915 0.9831 0.9831 nan 0.9831 0.0 0.9831
0.0511 115.0 14375 0.1040 0.4904 0.9807 0.9807 nan 0.9807 0.0 0.9807
0.05 116.0 14500 0.1038 0.4913 0.9826 0.9826 nan 0.9826 0.0 0.9826
0.0522 117.0 14625 0.1051 0.4907 0.9814 0.9814 nan 0.9814 0.0 0.9814
0.0492 118.0 14750 0.1012 0.4908 0.9817 0.9817 nan 0.9817 0.0 0.9817
0.0526 119.0 14875 0.1041 0.4905 0.9811 0.9811 nan 0.9811 0.0 0.9811
0.0483 120.0 15000 0.1048 0.4918 0.9836 0.9836 nan 0.9836 0.0 0.9836
0.0496 121.0 15125 0.1067 0.4904 0.9807 0.9807 nan 0.9807 0.0 0.9807
0.0486 122.0 15250 0.1090 0.4900 0.9799 0.9799 nan 0.9799 0.0 0.9799
0.0539 123.0 15375 0.1029 0.4898 0.9797 0.9797 nan 0.9797 0.0 0.9797
0.0507 124.0 15500 0.1043 0.4902 0.9804 0.9804 nan 0.9804 0.0 0.9804
0.0482 125.0 15625 0.1064 0.4896 0.9791 0.9791 nan 0.9791 0.0 0.9791
0.0487 126.0 15750 0.1070 0.4907 0.9813 0.9813 nan 0.9813 0.0 0.9813
0.0492 127.0 15875 0.1101 0.4918 0.9836 0.9836 nan 0.9836 0.0 0.9836
0.0479 128.0 16000 0.1045 0.4900 0.9800 0.9800 nan 0.9800 0.0 0.9800
0.0514 129.0 16125 0.1043 0.4910 0.9820 0.9820 nan 0.9820 0.0 0.9820
0.0505 130.0 16250 0.1070 0.4911 0.9821 0.9821 nan 0.9821 0.0 0.9821
0.0491 131.0 16375 0.1019 0.4905 0.9811 0.9811 nan 0.9811 0.0 0.9811
0.0477 132.0 16500 0.1009 0.4904 0.9808 0.9808 nan 0.9808 0.0 0.9808
0.0476 133.0 16625 0.1015 0.4909 0.9818 0.9818 nan 0.9818 0.0 0.9818
0.0462 134.0 16750 0.1060 0.4902 0.9804 0.9804 nan 0.9804 0.0 0.9804
0.0485 135.0 16875 0.1018 0.4898 0.9795 0.9795 nan 0.9795 0.0 0.9795
0.0483 136.0 17000 0.1056 0.4898 0.9796 0.9796 nan 0.9796 0.0 0.9796
0.0503 137.0 17125 0.1044 0.4910 0.9820 0.9820 nan 0.9820 0.0 0.9820
0.0514 138.0 17250 0.1053 0.4906 0.9813 0.9813 nan 0.9813 0.0 0.9813
0.0446 139.0 17375 0.1051 0.4904 0.9808 0.9808 nan 0.9808 0.0 0.9808
0.047 140.0 17500 0.1071 0.4903 0.9807 0.9807 nan 0.9807 0.0 0.9807
0.0467 141.0 17625 0.1085 0.4914 0.9828 0.9828 nan 0.9828 0.0 0.9828
0.0476 142.0 17750 0.1077 0.4916 0.9832 0.9832 nan 0.9832 0.0 0.9832
0.0472 143.0 17875 0.1122 0.4909 0.9818 0.9818 nan 0.9818 0.0 0.9818
0.0477 144.0 18000 0.1043 0.4904 0.9808 0.9808 nan 0.9808 0.0 0.9808
0.0467 145.0 18125 0.1051 0.4898 0.9797 0.9797 nan 0.9797 0.0 0.9797
0.0493 146.0 18250 0.1049 0.4897 0.9795 0.9795 nan 0.9795 0.0 0.9795
0.0485 147.0 18375 0.1059 0.4905 0.9810 0.9810 nan 0.9810 0.0 0.9810
0.0462 148.0 18500 0.1057 0.4893 0.9787 0.9787 nan 0.9787 0.0 0.9787
0.0474 149.0 18625 0.1037 0.4900 0.9800 0.9800 nan 0.9800 0.0 0.9800
0.0506 150.0 18750 0.1052 0.4907 0.9814 0.9814 nan 0.9814 0.0 0.9814
0.0479 151.0 18875 0.1069 0.4903 0.9805 0.9805 nan 0.9805 0.0 0.9805
0.0439 152.0 19000 0.1080 0.4908 0.9816 0.9816 nan 0.9816 0.0 0.9816
0.0492 153.0 19125 0.1019 0.4904 0.9808 0.9808 nan 0.9808 0.0 0.9808
0.0442 154.0 19250 0.1053 0.4910 0.9821 0.9821 nan 0.9821 0.0 0.9821
0.0484 155.0 19375 0.1032 0.4909 0.9819 0.9819 nan 0.9819 0.0 0.9819
0.0466 156.0 19500 0.1039 0.4906 0.9812 0.9812 nan 0.9812 0.0 0.9812
0.0444 157.0 19625 0.1038 0.4904 0.9809 0.9809 nan 0.9809 0.0 0.9809
0.0463 158.0 19750 0.1038 0.4907 0.9814 0.9814 nan 0.9814 0.0 0.9814
0.0465 159.0 19875 0.1054 0.4907 0.9815 0.9815 nan 0.9815 0.0 0.9815
0.046 160.0 20000 0.1042 0.4902 0.9804 0.9804 nan 0.9804 0.0 0.9804

Framework versions

  • Transformers 4.49.0.dev0
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
43,405
Safetensors
Model size
3.72M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Saumya-Mundra/segformer-finetuned-tt-1000-2k

Base model

nvidia/mit-b0
Finetuned
(353)
this model