YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co./docs/hub/model-cards#model-card-metadata)
Test Code
import tensorflow as tf
from transformers import TFAutoModelForPreTraining, AutoTokenizer
from normalizer import normalize
import numpy as np
model = TFAutoModelForPreTraining.from_pretrained("SarwarShafee/BanglaBert_with_TFModel", from_pt=True)
tokenizer = AutoTokenizer.from_pretrained("SarwarShafee/BanglaBert_with_TFModel")
original_sentence = "আমি কৃতজ্ঞ কারণ আপনি আমার জন্য অনেক কিছু করেছেন।"
fake_sentence = "আমি হতাশ কারণ আপনি আমার জন্য অনেক কিছু করেছেন।"
fake_sentence = normalize(fake_sentence) # this normalization step is required before tokenizing the text
fake_tokens = tokenizer.tokenize(fake_sentence)
fake_inputs = tokenizer.encode(fake_sentence, return_tensors="tf")
discriminator_outputs = model(fake_inputs)[0]
predictions = tf.round((tf.sign(discriminator_outputs) + 1) / 2)
# Convert the predictions to a Python list and then to integers
predictions_list = predictions.numpy().squeeze().tolist()
integer_predictions = [int(prediction[0]) for prediction in predictions_list[1:-1]]
print(" ".join(fake_tokens))
print("-" * 50)
print(" ".join([str(prediction) for prediction in integer_predictions]))
print("-" * 50)
- Downloads last month
- 4
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.