Saiteja's picture
Saiteja/ner-finetune
a0f61b0
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: distilbert-base-uncased-finetuned-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2003
type: conll2003
config: conll2003
split: validation
args: conll2003
metrics:
- name: Precision
type: precision
value: 0.9260243632336655
- name: Recall
type: recall
value: 0.9354513927732409
- name: F1
type: f1
value: 0.9307140074572875
- name: Accuracy
type: accuracy
value: 0.9834940505504631
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-ner
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co./distilbert-base-uncased) on the conll2003 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0617
- Precision: 0.9260
- Recall: 0.9355
- F1: 0.9307
- Accuracy: 0.9835
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.2458 | 1.0 | 878 | 0.0707 | 0.9008 | 0.9230 | 0.9118 | 0.9797 |
| 0.0506 | 2.0 | 1756 | 0.0616 | 0.9260 | 0.9332 | 0.9296 | 0.9830 |
| 0.0312 | 3.0 | 2634 | 0.0617 | 0.9260 | 0.9355 | 0.9307 | 0.9835 |
### Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1