Sailesh9999's picture
Add new SentenceTransformer model.
39056a5 verified
metadata
language:
  - en
license: apache-2.0
library_name: sentence-transformers
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:6300
  - loss:MatryoshkaLoss
  - loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-base-en-v1.5
datasets: []
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@3
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_precision@1
  - cosine_precision@3
  - cosine_precision@5
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@3
  - cosine_recall@5
  - cosine_recall@10
  - cosine_ndcg@10
  - cosine_mrr@10
  - cosine_map@10
widget:
  - source_sentence: >-
      The Gross Merchandise Sales (GMS) decreased by 1.2% in 2023 compared to
      2022.
    sentences:
      - What specific matters did the CFPB investigate concerning Equifax?
      - >-
        What was the percentage decline in GMS for the year ended December 31,
        2023 compared to 2022?
      - >-
        What percentage of eBay's 2023 net revenues were attributed to
        international markets?
  - source_sentence: >-
      Asset management and administration fees vary with changes in the balances
      of client assets due to market fluctuations and client activity.
    sentences:
      - >-
        Why was there a net outflow of cash in financing activities in fiscal
        2022?
      - >-
        How do asset management and administration fees vary at The Charles
        Schwab Corporation?
      - What are some key goals of the corporation related to climate change?
  - source_sentence: >-
      Operating profit margin was 19.3 percent in 2023, compared with 13.3
      percent in 2022.
    sentences:
      - What was the operating profit margin for 2023?
      - How do the studios compete in the entertainment industry?
      - >-
        What types of audio products does Garmin's Fusion and JL Audio brands
        offer?
  - source_sentence: >-
      Subsequent to 2023, on February 12, 2024, AbbVie borrowed $5.0 billion
      under the term loan credit agreement.
    sentences:
      - >-
        What percentage of U.S. dialysis patient service revenues in 2023 came
        from Medicare and Medicare Advantage plans?
      - >-
        What is Peloton Interactive, Inc. known for in the interactive fitness
        industry?
      - >-
        What was the purpose stated by AbbVie for borrowing $5.0 billion under
        the term loan credit agreement on February 12, 2024?
  - source_sentence: >-
      Chipotle retains an independent third-party compensation consultant each
      year to conduct a pay equity analysis of its U.S. and Canadian workforce,
      including factors of pay such as grade level, tenure in role, and external
      market conditions like geographic location, to ensure consistency and
      equitable treatment among employees.
    sentences:
      - How does Chipotle ensure pay equity among its employees?
      - >-
        How can one locate information on legal proceedings within the
        Consolidated Financial Statements?
      - >-
        What criteria did the independent audit use to assess the effectiveness
        of internal control over financial reporting at the company?
pipeline_tag: sentence-similarity
model-index:
  - name: BGE base Financial Matryoshka
    results:
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 768
          type: dim_768
        metrics:
          - type: cosine_accuracy@1
            value: 0.6871428571428572
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.8214285714285714
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8585714285714285
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6871428571428572
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.27380952380952384
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.1717142857142857
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.6871428571428572
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.8214285714285714
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8585714285714285
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7966931280955273
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7633656462585031
            name: Cosine Mrr@10
          - type: cosine_map@10
            value: 0.7633656462585034
            name: Cosine Map@10
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 512
          type: dim_512
        metrics:
          - type: cosine_accuracy@1
            value: 0.6857142857142857
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.82
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8557142857142858
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9014285714285715
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6857142857142857
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2733333333333333
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.17114285714285712
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09014285714285712
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.6857142857142857
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.82
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8557142857142858
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9014285714285715
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7951662657569053
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.761045918367347
            name: Cosine Mrr@10
          - type: cosine_map@10
            value: 0.761045918367347
            name: Cosine Map@10
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 256
          type: dim_256
        metrics:
          - type: cosine_accuracy@1
            value: 0.6814285714285714
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.8171428571428572
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8571428571428571
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.8885714285714286
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6814285714285714
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2723809523809524
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.17142857142857137
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.08885714285714284
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.6814285714285714
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.8171428571428572
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8571428571428571
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.8885714285714286
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7890567420578879
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7567375283446709
            name: Cosine Mrr@10
          - type: cosine_map@10
            value: 0.7567375283446711
            name: Cosine Map@10
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 128
          type: dim_128
        metrics:
          - type: cosine_accuracy@1
            value: 0.6571428571428571
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.8071428571428572
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8457142857142858
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.8742857142857143
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6571428571428571
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.26904761904761904
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.16914285714285712
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.08742857142857141
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.6571428571428571
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.8071428571428572
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8457142857142858
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.8742857142857143
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7723888716536037
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7390544217687071
            name: Cosine Mrr@10
          - type: cosine_map@10
            value: 0.7390544217687074
            name: Cosine Map@10
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 64
          type: dim_64
        metrics:
          - type: cosine_accuracy@1
            value: 0.6157142857142858
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.7685714285714286
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8171428571428572
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.8557142857142858
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6157142857142858
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2561904761904762
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.1634285714285714
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.08557142857142856
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.6157142857142858
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.7685714285714286
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8171428571428572
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.8557142857142858
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7405386424360808
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7031672335600904
            name: Cosine Mrr@10
          - type: cosine_map@10
            value: 0.7031672335600907
            name: Cosine Map@10

BGE base Financial Matryoshka

This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-base-en-v1.5
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("Sailesh9999/bge-base-financial-matryoshka_3")
# Run inference
sentences = [
    'Chipotle retains an independent third-party compensation consultant each year to conduct a pay equity analysis of its U.S. and Canadian workforce, including factors of pay such as grade level, tenure in role, and external market conditions like geographic location, to ensure consistency and equitable treatment among employees.',
    'How does Chipotle ensure pay equity among its employees?',
    'How can one locate information on legal proceedings within the Consolidated Financial Statements?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.6871
cosine_accuracy@3 0.8214
cosine_accuracy@5 0.8586
cosine_accuracy@10 0.9
cosine_precision@1 0.6871
cosine_precision@3 0.2738
cosine_precision@5 0.1717
cosine_precision@10 0.09
cosine_recall@1 0.6871
cosine_recall@3 0.8214
cosine_recall@5 0.8586
cosine_recall@10 0.9
cosine_ndcg@10 0.7967
cosine_mrr@10 0.7634
cosine_map@10 0.7634

Information Retrieval

Metric Value
cosine_accuracy@1 0.6857
cosine_accuracy@3 0.82
cosine_accuracy@5 0.8557
cosine_accuracy@10 0.9014
cosine_precision@1 0.6857
cosine_precision@3 0.2733
cosine_precision@5 0.1711
cosine_precision@10 0.0901
cosine_recall@1 0.6857
cosine_recall@3 0.82
cosine_recall@5 0.8557
cosine_recall@10 0.9014
cosine_ndcg@10 0.7952
cosine_mrr@10 0.761
cosine_map@10 0.761

Information Retrieval

Metric Value
cosine_accuracy@1 0.6814
cosine_accuracy@3 0.8171
cosine_accuracy@5 0.8571
cosine_accuracy@10 0.8886
cosine_precision@1 0.6814
cosine_precision@3 0.2724
cosine_precision@5 0.1714
cosine_precision@10 0.0889
cosine_recall@1 0.6814
cosine_recall@3 0.8171
cosine_recall@5 0.8571
cosine_recall@10 0.8886
cosine_ndcg@10 0.7891
cosine_mrr@10 0.7567
cosine_map@10 0.7567

Information Retrieval

Metric Value
cosine_accuracy@1 0.6571
cosine_accuracy@3 0.8071
cosine_accuracy@5 0.8457
cosine_accuracy@10 0.8743
cosine_precision@1 0.6571
cosine_precision@3 0.269
cosine_precision@5 0.1691
cosine_precision@10 0.0874
cosine_recall@1 0.6571
cosine_recall@3 0.8071
cosine_recall@5 0.8457
cosine_recall@10 0.8743
cosine_ndcg@10 0.7724
cosine_mrr@10 0.7391
cosine_map@10 0.7391

Information Retrieval

Metric Value
cosine_accuracy@1 0.6157
cosine_accuracy@3 0.7686
cosine_accuracy@5 0.8171
cosine_accuracy@10 0.8557
cosine_precision@1 0.6157
cosine_precision@3 0.2562
cosine_precision@5 0.1634
cosine_precision@10 0.0856
cosine_recall@1 0.6157
cosine_recall@3 0.7686
cosine_recall@5 0.8171
cosine_recall@10 0.8557
cosine_ndcg@10 0.7405
cosine_mrr@10 0.7032
cosine_map@10 0.7032

Training Details

Training Dataset

Unnamed Dataset

  • Size: 6,300 training samples
  • Columns: positive and anchor
  • Approximate statistics based on the first 1000 samples:
    positive anchor
    type string string
    details
    • min: 7 tokens
    • mean: 46.55 tokens
    • max: 439 tokens
    • min: 9 tokens
    • mean: 20.43 tokens
    • max: 46 tokens
  • Samples:
    positive anchor
    Americas $
    Item 1 Business typically includes detailed information about the organization's operations, the nature of the business, and its strategic direction. What is the title of the section that potentially discusses the operations or nature of a business in a document?
    Operating expenses as a percentage of total revenues decreased to 15.3% in 2023 compared to 15.9% in 2022. What was the operating expenses as a percentage of total revenues in 2023?
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 16
  • learning_rate: 1e-05
  • num_train_epochs: 4
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • bf16: True
  • tf32: True
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 16
  • eval_accumulation_steps: None
  • learning_rate: 1e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: True
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss dim_128_cosine_map@10 dim_256_cosine_map@10 dim_512_cosine_map@10 dim_64_cosine_map@10 dim_768_cosine_map@10
0.8122 10 1.7427 - - - - -
0.9746 12 - 0.7118 0.7377 0.7411 0.6774 0.7440
1.6244 20 0.9354 - - - - -
1.9492 24 - 0.7353 0.7544 0.7562 0.7008 0.7632
2.4365 30 0.674 - - - - -
2.9239 36 - 0.7382 0.7569 0.7612 0.7018 0.7625
3.2487 40 0.5862 - - - - -
3.8985 48 - 0.7391 0.7567 0.761 0.7032 0.7634
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.9.18
  • Sentence Transformers: 3.0.1
  • Transformers: 4.41.2
  • PyTorch: 2.1.2+cu121
  • Accelerate: 0.29.3
  • Datasets: 2.19.1
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}