Sailesh9999's picture
Add new SentenceTransformer model.
7d3292f verified
|
raw
history blame
28.4 kB
metadata
language:
  - en
license: apache-2.0
library_name: sentence-transformers
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:6300
  - loss:MatryoshkaLoss
  - loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-base-en-v1.5
datasets: []
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@3
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_precision@1
  - cosine_precision@3
  - cosine_precision@5
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@3
  - cosine_recall@5
  - cosine_recall@10
  - cosine_ndcg@10
  - cosine_mrr@10
  - cosine_map@10
widget:
  - source_sentence: >-
      The Gross Merchandise Sales (GMS) decreased by 1.2% in 2023 compared to
      2022.
    sentences:
      - What specific matters did the CFPB investigate concerning Equifax?
      - >-
        What was the percentage decline in GMS for the year ended December 31,
        2023 compared to 2022?
      - >-
        What percentage of eBay's 2023 net revenues were attributed to
        international markets?
  - source_sentence: >-
      Asset management and administration fees vary with changes in the balances
      of client assets due to market fluctuations and client activity.
    sentences:
      - >-
        Why was there a net outflow of cash in financing activities in fiscal
        2022?
      - >-
        How do asset management and administration fees vary at The Charles
        Schwab Corporation?
      - What are some key goals of the corporation related to climate change?
  - source_sentence: >-
      Operating profit margin was 19.3 percent in 2023, compared with 13.3
      percent in 2022.
    sentences:
      - What was the operating profit margin for 2023?
      - How do the studios compete in the entertainment industry?
      - >-
        What types of audio products does Garmin's Fusion and JL Audio brands
        offer?
  - source_sentence: >-
      Subsequent to 2023, on February 12, 2024, AbbVie borrowed $5.0 billion
      under the term loan credit agreement.
    sentences:
      - >-
        What percentage of U.S. dialysis patient service revenues in 2023 came
        from Medicare and Medicare Advantage plans?
      - >-
        What is Peloton Interactive, Inc. known for in the interactive fitness
        industry?
      - >-
        What was the purpose stated by AbbVie for borrowing $5.0 billion under
        the term loan credit agreement on February 12, 2024?
  - source_sentence: >-
      Chipotle retains an independent third-party compensation consultant each
      year to conduct a pay equity analysis of its U.S. and Canadian workforce,
      including factors of pay such as grade level, tenure in role, and external
      market conditions like geographic location, to ensure consistency and
      equitable treatment among employees.
    sentences:
      - How does Chipotle ensure pay equity among its employees?
      - >-
        How can one locate information on legal proceedings within the
        Consolidated Financial Statements?
      - >-
        What criteria did the independent audit use to assess the effectiveness
        of internal control over financial reporting at the company?
pipeline_tag: sentence-similarity
model-index:
  - name: BGE base Financial Matryoshka
    results:
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 768
          type: dim_768
        metrics:
          - type: cosine_accuracy@1
            value: 0.48714285714285716
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.6428571428571429
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.7028571428571428
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.75
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.48714285714285716
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.21428571428571427
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.14057142857142857
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.075
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.48714285714285716
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.6428571428571429
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.7028571428571428
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.75
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.6189459704659449
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.5768225623582763
            name: Cosine Mrr@10
          - type: cosine_map@10
            value: 0.5768225623582766
            name: Cosine Map@10
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 512
          type: dim_512
        metrics:
          - type: cosine_accuracy@1
            value: 0.4857142857142857
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.6328571428571429
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.6885714285714286
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.7457142857142857
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.4857142857142857
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2109523809523809
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.13771428571428573
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.07457142857142858
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.4857142857142857
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.6328571428571429
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.6885714285714286
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.7457142857142857
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.6149627471785961
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.5730890022675735
            name: Cosine Mrr@10
          - type: cosine_map@10
            value: 0.5730890022675738
            name: Cosine Map@10
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 256
          type: dim_256
        metrics:
          - type: cosine_accuracy@1
            value: 0.46
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.62
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.69
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.74
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.46
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.20666666666666667
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.13799999999999998
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.074
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.46
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.62
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.69
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.74
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.5987029783221659
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.5533594104308387
            name: Cosine Mrr@10
          - type: cosine_map@10
            value: 0.553359410430839
            name: Cosine Map@10
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 128
          type: dim_128
        metrics:
          - type: cosine_accuracy@1
            value: 0.44857142857142857
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.59
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.6542857142857142
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.7385714285714285
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.44857142857142857
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.19666666666666666
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.13085714285714284
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.07385714285714286
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.44857142857142857
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.59
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.6542857142857142
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.7385714285714285
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.5851556676898599
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.5369790249433104
            name: Cosine Mrr@10
          - type: cosine_map@10
            value: 0.5369790249433106
            name: Cosine Map@10
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 64
          type: dim_64
        metrics:
          - type: cosine_accuracy@1
            value: 0.42
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.58
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.6357142857142857
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.7014285714285714
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.42
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.1933333333333333
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.12714285714285714
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.07014285714285713
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.42
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.58
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.6357142857142857
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.7014285714285714
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.5588909341096171
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.5134659863945576
            name: Cosine Mrr@10
          - type: cosine_map@10
            value: 0.5134659863945579
            name: Cosine Map@10

BGE base Financial Matryoshka

This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-base-en-v1.5
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("Sailesh9999/bge-base-financial-matryoshka_2")
# Run inference
sentences = [
    'Chipotle retains an independent third-party compensation consultant each year to conduct a pay equity analysis of its U.S. and Canadian workforce, including factors of pay such as grade level, tenure in role, and external market conditions like geographic location, to ensure consistency and equitable treatment among employees.',
    'How does Chipotle ensure pay equity among its employees?',
    'How can one locate information on legal proceedings within the Consolidated Financial Statements?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.4871
cosine_accuracy@3 0.6429
cosine_accuracy@5 0.7029
cosine_accuracy@10 0.75
cosine_precision@1 0.4871
cosine_precision@3 0.2143
cosine_precision@5 0.1406
cosine_precision@10 0.075
cosine_recall@1 0.4871
cosine_recall@3 0.6429
cosine_recall@5 0.7029
cosine_recall@10 0.75
cosine_ndcg@10 0.6189
cosine_mrr@10 0.5768
cosine_map@10 0.5768

Information Retrieval

Metric Value
cosine_accuracy@1 0.4857
cosine_accuracy@3 0.6329
cosine_accuracy@5 0.6886
cosine_accuracy@10 0.7457
cosine_precision@1 0.4857
cosine_precision@3 0.211
cosine_precision@5 0.1377
cosine_precision@10 0.0746
cosine_recall@1 0.4857
cosine_recall@3 0.6329
cosine_recall@5 0.6886
cosine_recall@10 0.7457
cosine_ndcg@10 0.615
cosine_mrr@10 0.5731
cosine_map@10 0.5731

Information Retrieval

Metric Value
cosine_accuracy@1 0.46
cosine_accuracy@3 0.62
cosine_accuracy@5 0.69
cosine_accuracy@10 0.74
cosine_precision@1 0.46
cosine_precision@3 0.2067
cosine_precision@5 0.138
cosine_precision@10 0.074
cosine_recall@1 0.46
cosine_recall@3 0.62
cosine_recall@5 0.69
cosine_recall@10 0.74
cosine_ndcg@10 0.5987
cosine_mrr@10 0.5534
cosine_map@10 0.5534

Information Retrieval

Metric Value
cosine_accuracy@1 0.4486
cosine_accuracy@3 0.59
cosine_accuracy@5 0.6543
cosine_accuracy@10 0.7386
cosine_precision@1 0.4486
cosine_precision@3 0.1967
cosine_precision@5 0.1309
cosine_precision@10 0.0739
cosine_recall@1 0.4486
cosine_recall@3 0.59
cosine_recall@5 0.6543
cosine_recall@10 0.7386
cosine_ndcg@10 0.5852
cosine_mrr@10 0.537
cosine_map@10 0.537

Information Retrieval

Metric Value
cosine_accuracy@1 0.42
cosine_accuracy@3 0.58
cosine_accuracy@5 0.6357
cosine_accuracy@10 0.7014
cosine_precision@1 0.42
cosine_precision@3 0.1933
cosine_precision@5 0.1271
cosine_precision@10 0.0701
cosine_recall@1 0.42
cosine_recall@3 0.58
cosine_recall@5 0.6357
cosine_recall@10 0.7014
cosine_ndcg@10 0.5589
cosine_mrr@10 0.5135
cosine_map@10 0.5135

Training Details

Training Dataset

Unnamed Dataset

  • Size: 6,300 training samples
  • Columns: positive and anchor
  • Approximate statistics based on the first 1000 samples:
    positive anchor
    type string string
    details
    • min: 7 tokens
    • mean: 46.55 tokens
    • max: 439 tokens
    • min: 9 tokens
    • mean: 20.43 tokens
    • max: 46 tokens
  • Samples:
    positive anchor
    Americas $
    Item 1 Business typically includes detailed information about the organization's operations, the nature of the business, and its strategic direction. What is the title of the section that potentially discusses the operations or nature of a business in a document?
    Operating expenses as a percentage of total revenues decreased to 15.3% in 2023 compared to 15.9% in 2022. What was the operating expenses as a percentage of total revenues in 2023?
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 16
  • learning_rate: 0.002
  • num_train_epochs: 4
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • bf16: True
  • tf32: True
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 16
  • eval_accumulation_steps: None
  • learning_rate: 0.002
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: True
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss dim_128_cosine_map@10 dim_256_cosine_map@10 dim_512_cosine_map@10 dim_64_cosine_map@10 dim_768_cosine_map@10
0.8122 10 1.7296 - - - - -
0.9746 12 - 0.4001 0.4162 0.4276 0.3764 0.4325
1.6244 20 5.4001 - - - - -
1.9492 24 - 0.2783 0.2849 0.2904 0.2511 0.2977
2.4365 30 6.4296 - - - - -
2.9239 36 - 0.5106 0.5267 0.5399 0.4879 0.5439
3.2487 40 1.2919 - - - - -
3.8985 48 - 0.537 0.5534 0.5731 0.5135 0.5768
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.9.18
  • Sentence Transformers: 3.0.1
  • Transformers: 4.41.2
  • PyTorch: 2.1.2+cu121
  • Accelerate: 0.29.3
  • Datasets: 2.19.1
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}