metadata
language:
- en
license: apache-2.0
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6300
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-base-en-v1.5
datasets: []
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@10
widget:
- source_sentence: >-
The Gross Merchandise Sales (GMS) decreased by 1.2% in 2023 compared to
2022.
sentences:
- What specific matters did the CFPB investigate concerning Equifax?
- >-
What was the percentage decline in GMS for the year ended December 31,
2023 compared to 2022?
- >-
What percentage of eBay's 2023 net revenues were attributed to
international markets?
- source_sentence: >-
Asset management and administration fees vary with changes in the balances
of client assets due to market fluctuations and client activity.
sentences:
- >-
Why was there a net outflow of cash in financing activities in fiscal
2022?
- >-
How do asset management and administration fees vary at The Charles
Schwab Corporation?
- What are some key goals of the corporation related to climate change?
- source_sentence: >-
Operating profit margin was 19.3 percent in 2023, compared with 13.3
percent in 2022.
sentences:
- What was the operating profit margin for 2023?
- How do the studios compete in the entertainment industry?
- >-
What types of audio products does Garmin's Fusion and JL Audio brands
offer?
- source_sentence: >-
Subsequent to 2023, on February 12, 2024, AbbVie borrowed $5.0 billion
under the term loan credit agreement.
sentences:
- >-
What percentage of U.S. dialysis patient service revenues in 2023 came
from Medicare and Medicare Advantage plans?
- >-
What is Peloton Interactive, Inc. known for in the interactive fitness
industry?
- >-
What was the purpose stated by AbbVie for borrowing $5.0 billion under
the term loan credit agreement on February 12, 2024?
- source_sentence: >-
Chipotle retains an independent third-party compensation consultant each
year to conduct a pay equity analysis of its U.S. and Canadian workforce,
including factors of pay such as grade level, tenure in role, and external
market conditions like geographic location, to ensure consistency and
equitable treatment among employees.
sentences:
- How does Chipotle ensure pay equity among its employees?
- >-
How can one locate information on legal proceedings within the
Consolidated Financial Statements?
- >-
What criteria did the independent audit use to assess the effectiveness
of internal control over financial reporting at the company?
pipeline_tag: sentence-similarity
model-index:
- name: BGE base Financial Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.48714285714285716
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.6428571428571429
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.7028571428571428
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.75
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.48714285714285716
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.21428571428571427
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.14057142857142857
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.075
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.48714285714285716
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.6428571428571429
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.7028571428571428
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.75
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.6189459704659449
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.5768225623582763
name: Cosine Mrr@10
- type: cosine_map@10
value: 0.5768225623582766
name: Cosine Map@10
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.4857142857142857
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.6328571428571429
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.6885714285714286
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.7457142857142857
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.4857142857142857
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2109523809523809
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.13771428571428573
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.07457142857142858
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.4857142857142857
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.6328571428571429
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.6885714285714286
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.7457142857142857
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.6149627471785961
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.5730890022675735
name: Cosine Mrr@10
- type: cosine_map@10
value: 0.5730890022675738
name: Cosine Map@10
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.46
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.62
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.69
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.74
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.46
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.20666666666666667
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.13799999999999998
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.074
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.46
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.62
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.69
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.74
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.5987029783221659
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.5533594104308387
name: Cosine Mrr@10
- type: cosine_map@10
value: 0.553359410430839
name: Cosine Map@10
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.44857142857142857
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.59
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.6542857142857142
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.7385714285714285
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.44857142857142857
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.19666666666666666
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.13085714285714284
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.07385714285714286
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.44857142857142857
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.59
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.6542857142857142
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.7385714285714285
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.5851556676898599
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.5369790249433104
name: Cosine Mrr@10
- type: cosine_map@10
value: 0.5369790249433106
name: Cosine Map@10
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.42
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.58
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.6357142857142857
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.7014285714285714
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.42
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.1933333333333333
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.12714285714285714
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.07014285714285713
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.42
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.58
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.6357142857142857
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.7014285714285714
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.5588909341096171
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.5134659863945576
name: Cosine Mrr@10
- type: cosine_map@10
value: 0.5134659863945579
name: Cosine Map@10
BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("Sailesh9999/bge-base-financial-matryoshka_2")
sentences = [
'Chipotle retains an independent third-party compensation consultant each year to conduct a pay equity analysis of its U.S. and Canadian workforce, including factors of pay such as grade level, tenure in role, and external market conditions like geographic location, to ensure consistency and equitable treatment among employees.',
'How does Chipotle ensure pay equity among its employees?',
'How can one locate information on legal proceedings within the Consolidated Financial Statements?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.4871 |
cosine_accuracy@3 |
0.6429 |
cosine_accuracy@5 |
0.7029 |
cosine_accuracy@10 |
0.75 |
cosine_precision@1 |
0.4871 |
cosine_precision@3 |
0.2143 |
cosine_precision@5 |
0.1406 |
cosine_precision@10 |
0.075 |
cosine_recall@1 |
0.4871 |
cosine_recall@3 |
0.6429 |
cosine_recall@5 |
0.7029 |
cosine_recall@10 |
0.75 |
cosine_ndcg@10 |
0.6189 |
cosine_mrr@10 |
0.5768 |
cosine_map@10 |
0.5768 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.4857 |
cosine_accuracy@3 |
0.6329 |
cosine_accuracy@5 |
0.6886 |
cosine_accuracy@10 |
0.7457 |
cosine_precision@1 |
0.4857 |
cosine_precision@3 |
0.211 |
cosine_precision@5 |
0.1377 |
cosine_precision@10 |
0.0746 |
cosine_recall@1 |
0.4857 |
cosine_recall@3 |
0.6329 |
cosine_recall@5 |
0.6886 |
cosine_recall@10 |
0.7457 |
cosine_ndcg@10 |
0.615 |
cosine_mrr@10 |
0.5731 |
cosine_map@10 |
0.5731 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.46 |
cosine_accuracy@3 |
0.62 |
cosine_accuracy@5 |
0.69 |
cosine_accuracy@10 |
0.74 |
cosine_precision@1 |
0.46 |
cosine_precision@3 |
0.2067 |
cosine_precision@5 |
0.138 |
cosine_precision@10 |
0.074 |
cosine_recall@1 |
0.46 |
cosine_recall@3 |
0.62 |
cosine_recall@5 |
0.69 |
cosine_recall@10 |
0.74 |
cosine_ndcg@10 |
0.5987 |
cosine_mrr@10 |
0.5534 |
cosine_map@10 |
0.5534 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.4486 |
cosine_accuracy@3 |
0.59 |
cosine_accuracy@5 |
0.6543 |
cosine_accuracy@10 |
0.7386 |
cosine_precision@1 |
0.4486 |
cosine_precision@3 |
0.1967 |
cosine_precision@5 |
0.1309 |
cosine_precision@10 |
0.0739 |
cosine_recall@1 |
0.4486 |
cosine_recall@3 |
0.59 |
cosine_recall@5 |
0.6543 |
cosine_recall@10 |
0.7386 |
cosine_ndcg@10 |
0.5852 |
cosine_mrr@10 |
0.537 |
cosine_map@10 |
0.537 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.42 |
cosine_accuracy@3 |
0.58 |
cosine_accuracy@5 |
0.6357 |
cosine_accuracy@10 |
0.7014 |
cosine_precision@1 |
0.42 |
cosine_precision@3 |
0.1933 |
cosine_precision@5 |
0.1271 |
cosine_precision@10 |
0.0701 |
cosine_recall@1 |
0.42 |
cosine_recall@3 |
0.58 |
cosine_recall@5 |
0.6357 |
cosine_recall@10 |
0.7014 |
cosine_ndcg@10 |
0.5589 |
cosine_mrr@10 |
0.5135 |
cosine_map@10 |
0.5135 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 6,300 training samples
- Columns:
positive
and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
type |
string |
string |
details |
- min: 7 tokens
- mean: 46.55 tokens
- max: 439 tokens
|
- min: 9 tokens
- mean: 20.43 tokens
- max: 46 tokens
|
- Samples:
positive |
anchor |
Americas |
$ |
Item 1 Business typically includes detailed information about the organization's operations, the nature of the business, and its strategic direction. |
What is the title of the section that potentially discusses the operations or nature of a business in a document? |
Operating expenses as a percentage of total revenues decreased to 15.3% in 2023 compared to 15.9% in 2022. |
What was the operating expenses as a percentage of total revenues in 2023? |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
gradient_accumulation_steps
: 16
learning_rate
: 0.002
num_train_epochs
: 4
lr_scheduler_type
: cosine
warmup_ratio
: 0.1
bf16
: True
tf32
: True
load_best_model_at_end
: True
optim
: adamw_torch_fused
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 16
eval_accumulation_steps
: None
learning_rate
: 0.002
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 4
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: True
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: True
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch_fused
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
dim_128_cosine_map@10 |
dim_256_cosine_map@10 |
dim_512_cosine_map@10 |
dim_64_cosine_map@10 |
dim_768_cosine_map@10 |
0.8122 |
10 |
1.7296 |
- |
- |
- |
- |
- |
0.9746 |
12 |
- |
0.4001 |
0.4162 |
0.4276 |
0.3764 |
0.4325 |
1.6244 |
20 |
5.4001 |
- |
- |
- |
- |
- |
1.9492 |
24 |
- |
0.2783 |
0.2849 |
0.2904 |
0.2511 |
0.2977 |
2.4365 |
30 |
6.4296 |
- |
- |
- |
- |
- |
2.9239 |
36 |
- |
0.5106 |
0.5267 |
0.5399 |
0.4879 |
0.5439 |
3.2487 |
40 |
1.2919 |
- |
- |
- |
- |
- |
3.8985 |
48 |
- |
0.537 |
0.5534 |
0.5731 |
0.5135 |
0.5768 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.9.18
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.29.3
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}