Sailesh9999's picture
Add new SentenceTransformer model.
423452e verified
|
raw
history blame
28.6 kB
metadata
language:
  - en
license: apache-2.0
library_name: sentence-transformers
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:6300
  - loss:MatryoshkaLoss
  - loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-base-en-v1.5
datasets: []
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@3
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_precision@1
  - cosine_precision@3
  - cosine_precision@5
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@3
  - cosine_recall@5
  - cosine_recall@10
  - cosine_ndcg@10
  - cosine_mrr@10
  - cosine_map@10
widget:
  - source_sentence: >-
      The Gross Merchandise Sales (GMS) decreased by 1.2% in 2023 compared to
      2022.
    sentences:
      - What specific matters did the CFPB investigate concerning Equifax?
      - >-
        What was the percentage decline in GMS for the year ended December 31,
        2023 compared to 2022?
      - >-
        What percentage of eBay's 2023 net revenues were attributed to
        international markets?
  - source_sentence: >-
      Asset management and administration fees vary with changes in the balances
      of client assets due to market fluctuations and client activity.
    sentences:
      - >-
        Why was there a net outflow of cash in financing activities in fiscal
        2022?
      - >-
        How do asset management and administration fees vary at The Charles
        Schwab Corporation?
      - What are some key goals of the corporation related to climate change?
  - source_sentence: >-
      Operating profit margin was 19.3 percent in 2023, compared with 13.3
      percent in 2022.
    sentences:
      - What was the operating profit margin for 2023?
      - How do the studios compete in the entertainment industry?
      - >-
        What types of audio products does Garmin's Fusion and JL Audio brands
        offer?
  - source_sentence: >-
      Subsequent to 2023, on February 12, 2024, AbbVie borrowed $5.0 billion
      under the term loan credit agreement.
    sentences:
      - >-
        What percentage of U.S. dialysis patient service revenues in 2023 came
        from Medicare and Medicare Advantage plans?
      - >-
        What is Peloton Interactive, Inc. known for in the interactive fitness
        industry?
      - >-
        What was the purpose stated by AbbVie for borrowing $5.0 billion under
        the term loan credit agreement on February 12, 2024?
  - source_sentence: >-
      Chipotle retains an independent third-party compensation consultant each
      year to conduct a pay equity analysis of its U.S. and Canadian workforce,
      including factors of pay such as grade level, tenure in role, and external
      market conditions like geographic location, to ensure consistency and
      equitable treatment among employees.
    sentences:
      - How does Chipotle ensure pay equity among its employees?
      - >-
        How can one locate information on legal proceedings within the
        Consolidated Financial Statements?
      - >-
        What criteria did the independent audit use to assess the effectiveness
        of internal control over financial reporting at the company?
pipeline_tag: sentence-similarity
model-index:
  - name: BGE base Financial Matryoshka
    results:
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 768
          type: dim_768
        metrics:
          - type: cosine_accuracy@1
            value: 0.6985714285714286
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.8342857142857143
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8628571428571429
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6985714285714286
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.27809523809523806
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.17257142857142854
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.08999999999999998
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.6985714285714286
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.8342857142857143
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8628571428571429
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.8029099239677612
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.771475056689342
            name: Cosine Mrr@10
          - type: cosine_map@10
            value: 0.7714750566893424
            name: Cosine Map@10
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 512
          type: dim_512
        metrics:
          - type: cosine_accuracy@1
            value: 0.6842857142857143
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.8271428571428572
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8628571428571429
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.8928571428571429
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6842857142857143
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2757142857142857
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.17257142857142854
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.08928571428571427
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.6842857142857143
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.8271428571428572
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8628571428571429
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.8928571428571429
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7942762197573711
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7620697278911563
            name: Cosine Mrr@10
          - type: cosine_map@10
            value: 0.7620697278911566
            name: Cosine Map@10
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 256
          type: dim_256
        metrics:
          - type: cosine_accuracy@1
            value: 0.6871428571428572
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.8157142857142857
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8614285714285714
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.8928571428571429
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6871428571428572
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.27190476190476187
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.17228571428571426
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.08928571428571427
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.6871428571428572
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.8157142857142857
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8614285714285714
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.8928571428571429
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7935865448697424
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7613917233560088
            name: Cosine Mrr@10
          - type: cosine_map@10
            value: 0.7613917233560091
            name: Cosine Map@10
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 128
          type: dim_128
        metrics:
          - type: cosine_accuracy@1
            value: 0.6757142857142857
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.8171428571428572
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8514285714285714
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.8814285714285715
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6757142857142857
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2723809523809524
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.17028571428571426
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.08814285714285712
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.6757142857142857
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.8171428571428572
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8514285714285714
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.8814285714285715
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7842926561068588
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7525731292517003
            name: Cosine Mrr@10
          - type: cosine_map@10
            value: 0.7525731292517006
            name: Cosine Map@10
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 64
          type: dim_64
        metrics:
          - type: cosine_accuracy@1
            value: 0.64
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.79
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8271428571428572
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.87
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.64
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2633333333333333
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.1654285714285714
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.087
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.64
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.79
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8271428571428572
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.87
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7594704472459967
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7236507936507934
            name: Cosine Mrr@10
          - type: cosine_map@10
            value: 0.7236507936507937
            name: Cosine Map@10

BGE base Financial Matryoshka

This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-base-en-v1.5
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("Sailesh9999/bge-base-financial-matryoshka")
# Run inference
sentences = [
    'Chipotle retains an independent third-party compensation consultant each year to conduct a pay equity analysis of its U.S. and Canadian workforce, including factors of pay such as grade level, tenure in role, and external market conditions like geographic location, to ensure consistency and equitable treatment among employees.',
    'How does Chipotle ensure pay equity among its employees?',
    'How can one locate information on legal proceedings within the Consolidated Financial Statements?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.6986
cosine_accuracy@3 0.8343
cosine_accuracy@5 0.8629
cosine_accuracy@10 0.9
cosine_precision@1 0.6986
cosine_precision@3 0.2781
cosine_precision@5 0.1726
cosine_precision@10 0.09
cosine_recall@1 0.6986
cosine_recall@3 0.8343
cosine_recall@5 0.8629
cosine_recall@10 0.9
cosine_ndcg@10 0.8029
cosine_mrr@10 0.7715
cosine_map@10 0.7715

Information Retrieval

Metric Value
cosine_accuracy@1 0.6843
cosine_accuracy@3 0.8271
cosine_accuracy@5 0.8629
cosine_accuracy@10 0.8929
cosine_precision@1 0.6843
cosine_precision@3 0.2757
cosine_precision@5 0.1726
cosine_precision@10 0.0893
cosine_recall@1 0.6843
cosine_recall@3 0.8271
cosine_recall@5 0.8629
cosine_recall@10 0.8929
cosine_ndcg@10 0.7943
cosine_mrr@10 0.7621
cosine_map@10 0.7621

Information Retrieval

Metric Value
cosine_accuracy@1 0.6871
cosine_accuracy@3 0.8157
cosine_accuracy@5 0.8614
cosine_accuracy@10 0.8929
cosine_precision@1 0.6871
cosine_precision@3 0.2719
cosine_precision@5 0.1723
cosine_precision@10 0.0893
cosine_recall@1 0.6871
cosine_recall@3 0.8157
cosine_recall@5 0.8614
cosine_recall@10 0.8929
cosine_ndcg@10 0.7936
cosine_mrr@10 0.7614
cosine_map@10 0.7614

Information Retrieval

Metric Value
cosine_accuracy@1 0.6757
cosine_accuracy@3 0.8171
cosine_accuracy@5 0.8514
cosine_accuracy@10 0.8814
cosine_precision@1 0.6757
cosine_precision@3 0.2724
cosine_precision@5 0.1703
cosine_precision@10 0.0881
cosine_recall@1 0.6757
cosine_recall@3 0.8171
cosine_recall@5 0.8514
cosine_recall@10 0.8814
cosine_ndcg@10 0.7843
cosine_mrr@10 0.7526
cosine_map@10 0.7526

Information Retrieval

Metric Value
cosine_accuracy@1 0.64
cosine_accuracy@3 0.79
cosine_accuracy@5 0.8271
cosine_accuracy@10 0.87
cosine_precision@1 0.64
cosine_precision@3 0.2633
cosine_precision@5 0.1654
cosine_precision@10 0.087
cosine_recall@1 0.64
cosine_recall@3 0.79
cosine_recall@5 0.8271
cosine_recall@10 0.87
cosine_ndcg@10 0.7595
cosine_mrr@10 0.7237
cosine_map@10 0.7237

Training Details

Training Dataset

Unnamed Dataset

  • Size: 6,300 training samples
  • Columns: positive and anchor
  • Approximate statistics based on the first 1000 samples:
    positive anchor
    type string string
    details
    • min: 7 tokens
    • mean: 46.55 tokens
    • max: 439 tokens
    • min: 9 tokens
    • mean: 20.43 tokens
    • max: 46 tokens
  • Samples:
    positive anchor
    Americas $
    Item 1 Business typically includes detailed information about the organization's operations, the nature of the business, and its strategic direction. What is the title of the section that potentially discusses the operations or nature of a business in a document?
    Operating expenses as a percentage of total revenues decreased to 15.3% in 2023 compared to 15.9% in 2022. What was the operating expenses as a percentage of total revenues in 2023?
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 16
  • learning_rate: 2e-05
  • num_train_epochs: 4
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • bf16: True
  • tf32: True
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 16
  • eval_accumulation_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: True
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss dim_128_cosine_map@10 dim_256_cosine_map@10 dim_512_cosine_map@10 dim_64_cosine_map@10 dim_768_cosine_map@10
0.8122 10 1.5638 - - - - -
0.9746 12 - 0.7308 0.7547 0.7547 0.7004 0.7624
1.6244 20 0.6662 - - - - -
1.9492 24 - 0.7468 0.7586 0.7624 0.7195 0.7655
2.4365 30 0.4634 - - - - -
2.9239 36 - 0.7525 0.7620 0.7614 0.7237 0.7717
3.2487 40 0.387 - - - - -
3.8985 48 - 0.7526 0.7614 0.7621 0.7237 0.7715
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.9.18
  • Sentence Transformers: 3.0.1
  • Transformers: 4.41.2
  • PyTorch: 2.1.2+cu121
  • Accelerate: 0.29.3
  • Datasets: 2.19.1
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}