Yi-1.5-9B-sft-241128
This model is a fine-tuned version of saves/Yi-1.5-9B-pt-241124 on the chinese-medical-dialogue, the CMB, the cMedQA2, the CMExam, the CMtMedQA, the COIG-CQIA-full, the COIG_full, the HuatuoGPT_sft_data_v, the huatuo_encyclopedia_q, the huatuo_lite, the imcs21, the Med-single-choice, the Medical_dialogue_system_en_single_turn, the qizhengpt-sft-20, the self_cognition, the sharegpt_zh_38K_format, the shennong, the shibing642-medica, the tigerbot_sft_data, the xywy-KG and the zhongyi-zhiku datasets. It achieves the following results on the evaluation set:
- Loss: 1.4478
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2.5e-06
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 2.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.6544 | 0.1277 | 1000 | 1.6105 |
1.5595 | 0.2554 | 2000 | 1.5668 |
1.5297 | 0.3830 | 3000 | 1.5394 |
1.5637 | 0.5107 | 4000 | 1.5188 |
1.5051 | 0.6384 | 5000 | 1.5028 |
1.4765 | 0.7661 | 6000 | 1.4895 |
1.4504 | 0.8938 | 7000 | 1.4779 |
1.4084 | 1.0215 | 8000 | 1.4716 |
1.4292 | 1.1491 | 9000 | 1.4653 |
1.4349 | 1.2768 | 10000 | 1.4597 |
1.4442 | 1.4045 | 11000 | 1.4548 |
1.422 | 1.5322 | 12000 | 1.4517 |
1.3986 | 1.6599 | 13000 | 1.4491 |
1.3949 | 1.7875 | 14000 | 1.4482 |
1.4241 | 1.9152 | 15000 | 1.4478 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 4
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.