metadata
base_model: thenlper/gte-small
datasets:
- sentence-transformers/all-nli
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy
- dot_accuracy
- manhattan_accuracy
- euclidean_accuracy
- max_accuracy
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:100000
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: A man is jumping unto his filthy bed.
sentences:
- A young male is looking at a newspaper while 2 females walks past him.
- The bed is dirty.
- The man is on the moon.
- source_sentence: >-
A carefully balanced male stands on one foot near a clean ocean beach
area.
sentences:
- A man is ouside near the beach.
- Three policemen patrol the streets on bikes
- A man is sitting on his couch.
- source_sentence: The man is wearing a blue shirt.
sentences:
- Near the trashcan the man stood and smoked
- >-
A man in a blue shirt leans on a wall beside a road with a blue van and
red car with water in the background.
- A man in a black shirt is playing a guitar.
- source_sentence: The girls are outdoors.
sentences:
- Two girls riding on an amusement part ride.
- a guy laughs while doing laundry
- >-
Three girls are standing together in a room, one is listening, one is
writing on a wall and the third is talking to them.
- source_sentence: >-
A construction worker peeking out of a manhole while his coworker sits on
the sidewalk smiling.
sentences:
- A worker is looking out of a manhole.
- A man is giving a presentation.
- The workers are both inside the manhole.
model-index:
- name: gte small finetuned on NLI
results:
- task:
type: triplet
name: Triplet
dataset:
name: all nli dev
type: all-nli-dev
metrics:
- type: cosine_accuracy
value: 0.9260328068043743
name: Cosine Accuracy
- type: dot_accuracy
value: 0.07396719319562577
name: Dot Accuracy
- type: manhattan_accuracy
value: 0.925273390036452
name: Manhattan Accuracy
- type: euclidean_accuracy
value: 0.9260328068043743
name: Euclidean Accuracy
- type: max_accuracy
value: 0.9260328068043743
name: Max Accuracy
- task:
type: triplet
name: Triplet
dataset:
name: all nli test
type: all-nli-test
metrics:
- type: cosine_accuracy
value: 0.9347858980178544
name: Cosine Accuracy
- type: dot_accuracy
value: 0.06521410198214556
name: Dot Accuracy
- type: manhattan_accuracy
value: 0.9331215009835073
name: Manhattan Accuracy
- type: euclidean_accuracy
value: 0.9347858980178544
name: Euclidean Accuracy
- type: max_accuracy
value: 0.9347858980178544
name: Max Accuracy
gte small finetuned on NLI
This is a sentence-transformers model finetuned from thenlper/gte-small on the sentence-transformers/all-nli dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: thenlper/gte-small
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("SMARTICT/gte-small-finetune-test")
# Run inference
sentences = [
'A construction worker peeking out of a manhole while his coworker sits on the sidewalk smiling.',
'A worker is looking out of a manhole.',
'The workers are both inside the manhole.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Triplet
- Dataset:
all-nli-dev
- Evaluated with
TripletEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.926 |
dot_accuracy | 0.074 |
manhattan_accuracy | 0.9253 |
euclidean_accuracy | 0.926 |
max_accuracy | 0.926 |
Triplet
- Dataset:
all-nli-test
- Evaluated with
TripletEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.9348 |
dot_accuracy | 0.0652 |
manhattan_accuracy | 0.9331 |
euclidean_accuracy | 0.9348 |
max_accuracy | 0.9348 |
Training Details
Training Dataset
sentence-transformers/all-nli
- Dataset: sentence-transformers/all-nli at d482672
- Size: 100,000 training samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 7 tokens
- mean: 10.46 tokens
- max: 46 tokens
- min: 6 tokens
- mean: 12.81 tokens
- max: 40 tokens
- min: 5 tokens
- mean: 13.4 tokens
- max: 50 tokens
- Samples:
anchor positive negative A person on a horse jumps over a broken down airplane.
A person is outdoors, on a horse.
A person is at a diner, ordering an omelette.
Children smiling and waving at camera
There are children present
The kids are frowning
A boy is jumping on skateboard in the middle of a red bridge.
The boy does a skateboarding trick.
The boy skates down the sidewalk.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
sentence-transformers/all-nli
- Dataset: sentence-transformers/all-nli at d482672
- Size: 6,584 evaluation samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 6 tokens
- mean: 17.95 tokens
- max: 63 tokens
- min: 4 tokens
- mean: 9.78 tokens
- max: 29 tokens
- min: 5 tokens
- mean: 10.35 tokens
- max: 29 tokens
- Samples:
anchor positive negative Two women are embracing while holding to go packages.
Two woman are holding packages.
The men are fighting outside a deli.
Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.
Two kids in numbered jerseys wash their hands.
Two kids in jackets walk to school.
A man selling donuts to a customer during a world exhibition event held in the city of Angeles
A man selling donuts to a customer.
A woman drinks her coffee in a small cafe.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 1warmup_ratio
: 0.1bf16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss | all-nli-dev_max_accuracy | all-nli-test_max_accuracy |
---|---|---|---|---|---|
0 | 0 | - | - | 0.9160 | - |
0.016 | 100 | 1.4107 | 0.6660 | 0.9069 | - |
0.032 | 200 | 0.7368 | 0.6155 | 0.8950 | - |
0.048 | 300 | 1.0729 | 0.5522 | 0.9054 | - |
0.064 | 400 | 0.719 | 0.5647 | 0.8957 | - |
0.08 | 500 | 0.7273 | 0.6278 | 0.8829 | - |
0.096 | 600 | 0.9222 | 0.5652 | 0.8975 | - |
0.112 | 700 | 0.8402 | 0.5837 | 0.8947 | - |
0.128 | 800 | 0.9511 | 0.6110 | 0.8864 | - |
0.144 | 900 | 1.0713 | 0.5923 | 0.8852 | - |
0.16 | 1000 | 0.9495 | 0.5216 | 0.8888 | - |
0.176 | 1100 | 1.0079 | 0.6263 | 0.8777 | - |
0.192 | 1200 | 0.9195 | 0.5970 | 0.8777 | - |
0.208 | 1300 | 0.8018 | 0.6342 | 0.8765 | - |
0.224 | 1400 | 0.7124 | 0.6462 | 0.8764 | - |
0.24 | 1500 | 0.709 | 0.5232 | 0.8964 | - |
0.256 | 1600 | 0.6055 | 0.6109 | 0.8838 | - |
0.272 | 1700 | 0.7887 | 0.6620 | 0.8768 | - |
0.288 | 1800 | 0.789 | 0.5957 | 0.8829 | - |
0.304 | 1900 | 0.6711 | 0.5377 | 0.8946 | - |
0.32 | 2000 | 0.6086 | 0.5596 | 0.8932 | - |
0.336 | 2100 | 0.5067 | 0.5676 | 0.8861 | - |
0.352 | 2200 | 0.5387 | 0.5704 | 0.8900 | - |
0.368 | 2300 | 0.6574 | 0.5308 | 0.8890 | - |
0.384 | 2400 | 0.6232 | 0.5051 | 0.8928 | - |
0.4 | 2500 | 0.6045 | 0.5179 | 0.9023 | - |
0.416 | 2600 | 0.4795 | 0.4766 | 0.8960 | - |
0.432 | 2700 | 0.7372 | 0.5463 | 0.8979 | - |
0.448 | 2800 | 0.7593 | 0.5337 | 0.8878 | - |
0.464 | 2900 | 0.7384 | 0.5203 | 0.8923 | - |
0.48 | 3000 | 0.6336 | 0.5099 | 0.8897 | - |
0.496 | 3100 | 0.6634 | 0.4803 | 0.8954 | - |
0.512 | 3200 | 0.5443 | 0.4524 | 0.9048 | - |
0.528 | 3300 | 0.5292 | 0.4232 | 0.9104 | - |
0.544 | 3400 | 0.4633 | 0.4414 | 0.9093 | - |
0.56 | 3500 | 0.4442 | 0.4393 | 0.9087 | - |
0.576 | 3600 | 0.4443 | 0.4178 | 0.9128 | - |
0.592 | 3700 | 0.4736 | 0.4123 | 0.9134 | - |
0.608 | 3800 | 0.4077 | 0.4025 | 0.9174 | - |
0.624 | 3900 | 0.4069 | 0.4032 | 0.9156 | - |
0.64 | 4000 | 0.6939 | 0.4353 | 0.9146 | - |
0.656 | 4100 | 0.865 | 0.4154 | 0.9172 | - |
0.672 | 4200 | 0.8518 | 0.3925 | 0.9172 | - |
0.688 | 4300 | 0.5989 | 0.3864 | 0.9190 | - |
0.704 | 4400 | 0.5399 | 0.3679 | 0.9197 | - |
0.72 | 4500 | 0.497 | 0.3766 | 0.9221 | - |
0.736 | 4600 | 0.585 | 0.3708 | 0.9228 | - |
0.752 | 4700 | 0.6454 | 0.3608 | 0.9203 | - |
0.768 | 4800 | 0.5414 | 0.3593 | 0.9213 | - |
0.784 | 4900 | 0.4648 | 0.3634 | 0.9210 | - |
0.8 | 5000 | 0.5781 | 0.3782 | 0.9216 | - |
0.816 | 5100 | 0.4401 | 0.3662 | 0.9227 | - |
0.832 | 5200 | 0.5241 | 0.3595 | 0.9215 | - |
0.848 | 5300 | 0.459 | 0.3618 | 0.9215 | - |
0.864 | 5400 | 0.5529 | 0.3693 | 0.9216 | - |
0.88 | 5500 | 0.5202 | 0.3573 | 0.9218 | - |
0.896 | 5600 | 0.4703 | 0.3529 | 0.9231 | - |
0.912 | 5700 | 0.5658 | 0.3513 | 0.9245 | - |
0.928 | 5800 | 0.5016 | 0.3491 | 0.9236 | - |
0.944 | 5900 | 0.6306 | 0.3492 | 0.9257 | - |
0.96 | 6000 | 0.6721 | 0.3507 | 0.9266 | - |
0.976 | 6100 | 0.586 | 0.3509 | 0.9257 | - |
0.992 | 6200 | 0.0014 | 0.3511 | 0.9260 | - |
1.0 | 6250 | - | - | - | 0.9348 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.4.0+cu121
- Accelerate: 0.32.1
- Datasets: 2.21.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}