Edit model card

SJ-Donald/kcbert-large-unsmile

SJ-Donald/kcbert-large-unsmile is pretrained model using follow:

Models

Datasets

How to use

from transformers import TextClassificationPipeline, BertForSequenceClassification, AutoTokenizer+

model_name = 'SJ-Donald/kcbert-large-unsmile'
model = BertForSequenceClassification.from_pretrained(model_name)

tokenizer = AutoTokenizer.from_pretrained(model_name)

pipe = TextClassificationPipeline(
    model = model,
    tokenizer = tokenizer,
    device = 0,   # cpu: -1, gpu: gpu number
    return_all_scores = True,
    function_to_apply = 'sigmoid'
)

for result in pipe("μ΄λž˜μ„œ μ—¬μžλŠ” κ²Œμž„μ„ ν•˜λ©΄ μ•ˆλœλ‹€")[0]:
    print(result)
    
{'label': 'μ—¬μ„±/κ°€μ‘±', 'score': 0.9793611168861389}
{'label': '남성', 'score': 0.006330598145723343}
{'label': 'μ„±μ†Œμˆ˜μž', 'score': 0.007870828732848167}
{'label': '인쒅/ꡭ적', 'score': 0.010810344479978085}
{'label': 'μ—°λ Ή', 'score': 0.020540334284305573}
{'label': '지역', 'score': 0.015790466219186783}
{'label': '쒅ꡐ', 'score': 0.014563685283064842}
{'label': '기타 혐였', 'score': 0.04097242280840874}
{'label': 'μ•…ν”Œ/μš•μ„€', 'score': 0.019168635830283165}
{'label': 'clean', 'score': 0.014866289682686329}
Downloads last month
11
Safetensors
Model size
334M params
Tensor type
F32
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Space using SJ-Donald/kcbert-large-unsmile 1