library_name: transformers
license: cc-by-nc-4.0
datasets:
- kyujinpy/KOR-OpenOrca-Platypus-v3
language:
- ko
- en
tags:
- Economic
- Finance
base_model: davidkim205/komt-mistral-7b-v1
Model Details
Model Developers: Sogang University SGEconFinlab(<https://sc.sogang.ac.kr/aifinlab/)
Model Description
This model is a language model specialized in economics and finance. This was learned with various economic/finance-related data. The data sources are listed below, and we are not releasing the data that we trained on because it was used for research/policy purposes. If you wish to use the original data, please contact the original author directly for permission to use it.
- Developed by: Sogang University SGEconFinlab(https://sc.sogang.ac.kr/aifinlab/)
- License: cc-by-nc-4.0
- Base Model: davidkim205/komt-mistral-7b-v1(https://huggingface.co./davidkim205/komt-mistral-7b-v1)
Loading the Model
peft_model_id = "SGEcon/komt-mistral-7b-v1_fin_v5"
config = PeftConfig.from_pretrained(peft_model_id)
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, quantization_config=bnb_config, device_map={"":0})
model = PeftModel.from_pretrained(model, peft_model_id)
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
model.eval()
streamer = TextStreamer(tokenizer)
Conducting Conversation
def gen(x):
generation_config = GenerationConfig(
temperature=0.9,
top_p=0.8,
top_k=50,
max_new_tokens=256,
early_stopping=True,
do_sample=True,
)
q = f"[INST]{x} [/INST]"
gened = model.generate(
**tokenizer(
q,
return_tensors='pt',
return_token_type_ids=False
).to('cuda'),
generation_config=generation_config,
pad_token_id=tokenizer.eos_token_id,
eos_token_id=tokenizer.eos_token_id,
streamer=streamer,
)
result_str = tokenizer.decode(gened[0])
# μ
λ ₯ μ§λ¬Έκ³Ό "[INST]" λ° "[/INST]" νκ·Έ μ κ±°
input_question_with_tags = f"[INST]{x} [/INST]"
result_str = result_str.replace(input_question_with_tags, "").strip()
# "<s>" λ° "</s>" νκ·Έ μ κ±°
result_str = result_str.replace("<s>", "").replace("</s>", "").strip()
return result_str
Training Details
We use QLora to train the base model. Quantized Low Rank Adapters (QLoRA) is an efficient technique that uses 4-bit quantized pre-trained language models to fine-tune 65 billion parameter models on a 48 GB GPU while significantly reducing memory usage. The method uses NormalFloat 4-bit (NF4), a new data type that is theoretically optimal for normally distributed weights; Double Quantization, which further quantizes quantization constants to reduce average memory usage; and Paged Optimizers, which manage memory spikes during mini-batch processing, to increase memory efficiency without sacrificing performance.
Also, we performed instruction tuning using the data that we collected and the kyujinpy/KOR-OpenOrca-Platypus-v3 dataset on the hugging face. Instruction tuning is learning in a supervised learning format that uses instructions and input data together as input and output data as a pair.
Training Data
- νκ΅μν: κ²½μ κΈμ΅μ©μ΄ 700μ (https://www.bok.or.kr/portal/bbs/B0000249/view.do?nttId=235017&menuNo=200765)
- κΈμ΅κ°λ μ: κΈμ΅μλΉμ μ 보 ν¬νΈ νμΈ κΈμ΅μ©μ΄μ¬μ (https://fine.fss.or.kr/fine/fnctip/fncDicary/list.do?menuNo=900021)
- KDI κ²½μ μ 보μΌν°: μμ¬ μ©μ΄μ¬μ (https://eiec.kdi.re.kr/material/wordDic.do)
- νκ΅κ²½μ μ λ¬Έ/νκ²½λ·μ»΄: νκ²½κ²½μ μ©μ΄μ¬μ (https://terms.naver.com/list.naver?cid=42107&categoryId=42107), μ€λμ TESAT(https://www.tesat.or.kr/bbs.frm.list/tesat_study?s_cateno=1), μ€λμ μ£Όλμ΄ TESAT(https://www.tesat.or.kr/bbs.frm.list/tesat_study?s_cateno=5), μκΈμκΈνκ²½(https://sgsg.hankyung.com/tesat/study)
- μ€μλ²€μ²κΈ°μ λΆ/λνλ―Όκ΅μ λΆ: μ€μλ²€μ²κΈ°μ λΆ μ λ¬Έμ©μ΄(https://terms.naver.com/list.naver?cid=42103&categoryId=42103)
- κ³ μ±μΌ/λ²λ¬ΈμΆνμ¬: νκ³Β·μΈλ¬΄ μ©μ΄μ¬μ (https://terms.naver.com/list.naver?cid=51737&categoryId=51737)
- 맨νμ κ²½μ ν 8ν Word Index
- kyujinpy/KOR-OpenOrca-Platypus-v3(https://huggingface.co./datasets/kyujinpy/KOR-OpenOrca-Platypus-v3)
At the request of the original author, it is not to be used for commercial purposes. Therefore, it is licensed under the license CC-BY-NC-4.0. The copyright of the data used belongs to the original author, so please contact the original author when using it.
Training Hyperparameters
Hyperparameter | SGEcon/komt-mistral-7b-v1_fin_v5 |
---|---|
Lora Method | Lora |
load in 4 bit | True |
learning rate | 1e-6 |
lora alpa | 8 |
lora rank | 32 |
lora dropout | 0.05 |
optim | adamw_torch |
target_modules | o_proj, q_proj, up_proj, down_proj, gate_proj, k_proj, v_proj, lm_head |
License
The language identification model is distributed under the Creative Commons Attribution-NonCommercial 4.0 International Public License.
Example
μ€μμνμ μν μ λν΄μ μ€λͺ ν΄μ€λ?
μ€μμνμ κ΅κ° κ²½μ μ μμ μ μ μ§νκΈ° μν΄ κ΅κ°μ ν΅ν λ°ν, μν μ 무 κ°λ , λμΆ μ‘°μ λ±μ μ€μν μν μ μννλ κΈμ΅ κΈ°κ΄μ΄λ€. μ€μμνμ κ΅κ°μ ν΅ν λ°ν μ‘°μ μ ν΅ν΄ λ¬Όκ° μμΉμ μ΅μ νκ³ , μ΄λ₯Ό ν΅ν΄ κ°κ²© μμ μ±μ μ μ§νκ³ μ νλ€. λν, μ€μμνμ λμΆ μ‘°μ μ ν΅ν΄ κΈλ¦¬λ₯Ό μ‘°μ νμ¬ μκΈ μ‘°λ¬ μμ₯μ μ μ ν κΈλ¦¬ μμ€μ μ μ§νκ³ , μ΄λ₯Ό ν΅ν΄ κ²½μ νλμ μ μ ν μ‘°μ ν μ μλ€.