SGEcon's picture
Update README.md
758d33d verified
|
raw
history blame
4.87 kB
---
library_name: transformers
license: apache-2.0
pipeline_tag: text-generation
---
# Model Details
Model Developers: Sogang University SGEconFinlab
### Model Description
This model is a language model specialized in economics and finance. This was learned with various economic/finance-related data.
The data sources are listed below, and we are not releasing the data we trained on because it was used for research/policy purposes.
If you wish to use the original data rather than our training data, please contact the original author directly for permission to use it.
- **Developed by:** Sogang University SGEconFinlab(<https://sc.sogang.ac.kr/aifinlab/>)
- **Language(s) (NLP):** Ko/En
- **License:** apache-2.0
- **Base Model:** yanolja/KoSOLAR-10.7B-v0.2
## How to Get Started with the Model
peft_model_id = "SGEcon/KoSOLAR-10.7B-v0.2_fin_v4"
config = PeftConfig.from_pretrained(peft_model_id)
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, quantization_config=bnb_config, device_map={"":0})
model = PeftModel.from_pretrained(model, peft_model_id)
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
model.eval()
-------
import re
def gen(x):
inputs = tokenizer(f"### ์งˆ๋ฌธ: {x}\n\n### ๋‹ต๋ณ€:", return_tensors='pt', return_token_type_ids=False)
# Move data to GPU (if available)
inputs = {k: v.to(device="cuda" if torch.cuda.is_available() else "cpu") for k, v in inputs.items()}
gened = model.generate(
**inputs,
max_new_tokens=256,
early_stopping=True,
num_return_sequences=4,
do_sample=True,
eos_token_id=tokenizer.eos_token_id,
temperature=0.9,
top_p=0.8,
top_k=50
)
complete_answers = []
for gen_seq in gened:
decoded = tokenizer.decode(gen_seq, skip_special_tokens=True).strip()
# Extract only the text after the string "### ๋‹ต๋ณ€:"
first_answer_start_idx = decoded.find("### ๋‹ต๋ณ€:") + len("### ๋‹ต๋ณ€:")
temp_answer = decoded[first_answer_start_idx:].strip()
# Extract only text up to the second "### ๋‹ต๋ณ€:" string
second_answer_start_idx = temp_answer.find("### ๋‹ต๋ณ€:")
if second_answer_start_idx != -1:
complete_answer = temp_answer[:second_answer_start_idx].strip()
else:
complete_answer = temp_answer # ๋‘ ๋ฒˆ์งธ "### ๋‹ต๋ณ€:"์ด ์—†๋Š” ๊ฒฝ์šฐ ์ „์ฒด ๋‹ต๋ณ€ ๋ฐ˜ํ™˜
complete_answers.append(complete_answer)
return complete_answers
## Training Details
### Training Data
1. ํ•œ๊ตญ์€ํ–‰: ๊ฒฝ์ œ๊ธˆ์œต์šฉ์–ด 700์„ (<https://www.bok.or.kr/portal/bbs/B0000249/view.do?nttId=235017&menuNo=200765>)
2. ๊ธˆ์œต๊ฐ๋…์›: ๊ธˆ์œต์†Œ๋น„์ž ์ •๋ณด ํฌํ„ธ ํŒŒ์ธ ๊ธˆ์œต์šฉ์–ด์‚ฌ์ „(<https://fine.fss.or.kr/fine/fnctip/fncDicary/list.do?menuNo=900021>)
3. KDI ๊ฒฝ์ œ์ •๋ณด์„ผํ„ฐ: ์‹œ์‚ฌ ์šฉ์–ด์‚ฌ์ „(<https://eiec.kdi.re.kr/material/wordDic.do>)
4. ํ•œ๊ตญ๊ฒฝ์ œ์‹ ๋ฌธ/ํ•œ๊ฒฝ๋‹ท์ปด: ํ•œ๊ฒฝ๊ฒฝ์ œ์šฉ์–ด์‚ฌ์ „(<https://terms.naver.com/list.naver?cid=42107&categoryId=42107>), ์˜ค๋Š˜์˜ TESAT(<https://www.tesat.or.kr/bbs.frm.list/tesat_study?s_cateno=1>), ์˜ค๋Š˜์˜ ์ฃผ๋‹ˆ์–ด TESAT(<https://www.tesat.or.kr/bbs.frm.list/tesat_study?s_cateno=5>), ์ƒ๊ธ€์ƒ๊ธ€ํ•œ๊ฒฝ(<https://sgsg.hankyung.com/tesat/study>)
5. ์ค‘์†Œ๋ฒค์ฒ˜๊ธฐ์—…๋ถ€/๋Œ€ํ•œ๋ฏผ๊ตญ์ •๋ถ€: ์ค‘์†Œ๋ฒค์ฒ˜๊ธฐ์—…๋ถ€ ์ „๋ฌธ์šฉ์–ด(<https://terms.naver.com/list.naver?cid=42103&categoryId=42103>)
6. ๊ณ ์„ฑ์‚ผ/๋ฒ•๋ฌธ์ถœํŒ์‚ฌ: ํšŒ๊ณ„ยท์„ธ๋ฌด ์šฉ์–ด์‚ฌ์ „(<https://terms.naver.com/list.naver?cid=51737&categoryId=51737>)
7. ๋งจํ์˜ ๊ฒฝ์ œํ•™ 8ํŒ Word Index
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Training Hyperparameters
- Lora
1. r=16,
lora_alpha=16,
target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj", "lm_head"], # this is different by models
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM"
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->