library_name: transformers
tags:
- finance
- economic
license: cc-by-nc-4.0
datasets:
- mncai/orca_dpo_pairs_ko
language:
- ko
- en
Basemodel: SGEcon/KoSOLAR-10.7B-v0.2_fin_v4
Model Details
Model Developers: Sogang University SGEconFinlab(<https://sc.sogang.ac.kr/aifinlab/)
Model Description
This model is a language model specialized in economics and finance. This was learned with various economic/finance-related data. The data sources are listed below, and we are not releasing the data that we trained on because it was used for research/policy purposes. If you wish to use the original data, please contact the original author directly for permission to use it.
- Developed by: Sogang University SGEconFinlab(https://sc.sogang.ac.kr/aifinlab/)
- License: cc-by-nc-4.0
- Base Model: SGEcon/KoSOLAR-10.7B-v0.2_fin_v4(https://huggingface.co./SGEcon/KoSOLAR-10.7B-v0.2_fin_v4)
Loading the Model
peft_model_id = "SGEcon/EconFinKoSOLAR-10.7B"
config = PeftConfig.from_pretrained(peft_model_id)
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, quantization_config=bnb_config, device_map={"":0})
model = PeftModel.from_pretrained(model, peft_model_id)
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
model.eval()
Conducting Conversation
import re
def gen(x):
inputs = tokenizer(f"### μ§λ¬Έ: {x}\n\n### λ΅λ³:", return_tensors='pt', return_token_type_ids=False)
# Move data to GPU (if available)
inputs = {k: v.to(device="cuda" if torch.cuda.is_available() else "cpu") for k, v in inputs.items()}
gened = model.generate(
**inputs,
max_new_tokens=256, # Maximum number of new tokens to create
early_stopping=True,
num_return_sequences=1, # Generate only one answer
do_sample=True, # Enable sampling to generate a variety of answers
eos_token_id=tokenizer.eos_token_id, # Using EOS Token IDs
temperature=0.9, # This option is adjustable.
top_p=0.9, # This option is adjustable.
top_k=100 # This option is adjustable.
)
# Decode the generated sequence and convert it to output text
decoded = tokenizer.decode(gened[0], skip_special_tokens=True).strip()
# Extract only text after a string "### λ΅λ³:"
answer_start_idx = decoded.find("### λ΅λ³:") + len("### λ΅λ³:")
complete_answer = decoded[answer_start_idx:].strip()
# Find the first punctuation mark (. ? !) and extract only up to it
match = re.search(r"[\.\?\!][^\.\?\!]*$", complete_answer)
if match:
complete_answer = complete_answer[:match.end()].strip()
return complete_answer
Training Details
Training our model with PEFT, LoRA, DPO and Merge.
Low-Rank Adaptation (LoRA) fixes the weights of the pretrained model and attaches learnable rank decomposition matrices to each layer of the transformer, updating only these when finetuning. In other words, LoRA is a methodology that uses low-dimensional intrinsic rank (the number of dimensions that best describe the data for a given layer or parameter) for finetuning.
PEFT is a technique that does not tune all parameters of a model during fine-tuning, but only a small subset of parameters. By tuning only a few parameters while leaving others fixed, the model is less likely to suffer from catastrophic forgetting, where the model forgets previously learned tasks when it learns new ones. By tuning only a few parameters, models can be trained for different tasks such as QA, Summarize, and Generate PEFT.
Direct Preference Optimization (DPO) is an alternative to Reinforcement Learning from Human Feedback (RLHF). RLHF creates a reward function with human-selected data from multiple LLMs' answers to the same question, and then performs reinforcement learning on the reward function to improve model performance. DPO also uses preference data but trains directly without a reward function. We selected relatively important data from the data learned by the base model, asked the base model, and extracted four answers. All 4 answers were rejected, and the original answer was selected to create the dpo dataset. Then, combine our dataset and mncai/orca_dpo_pairs_ko dataset which published on huggingface.
Merge is a way to mix two or more models into a single model. Because merge is not training, it has the advantage of being very fast, requiring only CPU computation.
Training Data
- our dpo dataset
- It is not to be used for commercial purposes. Therefore, it is licensed under the license CC-BY-NC-4.0.
- mncai/orca_dpo_pairs_ko(https://huggingface.co./datasets/mncai/orca_dpo_pairs_ko)
Training Hyperparameters
Hyperparameter | SGEcon/KoSOLAR-10.7B-v0.2_fin_v4_dpo |
---|---|
Lora Method | Lora |
load in 4 bit | True |
learning rate | 1e-5 |
lr scheduler | cosine |
lora alpa | 8 |
lora rank | 32 |
lora dropout | 0.05 |
optim | adamw_torch |
target_modules | q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj, lm_head |
License
The language identification model is distributed under the Creative Commons Attribution-NonCommercial 4.0 International Public License.
Evaluation
We are creating our own economics questions and evaluating them. There are four tasks in total: Korean-English sentence translation with economic terms, English-Korean sentence translation with economic terms, economic terms, and multiple-choice questions on economics. We'll keep you updated on our progress and results.
Example
μ€μμνμ μν μ λν΄μ μ€λͺ ν΄μ€λ?
μ°μ μ€μμνμ΄ λνλ κ³³μΈμ§ μ€λͺ ν κ². μ€μμνμ μ λΆμ κ²½μ 주체 μ¬μ΄μ μ€μ¬μ κ°μ μν μ νλ κ³³μ΄μΌ. μ€μμνμ ν΅νμ μ± , κΈμ΅μμ€ν μ μμ μ λ΄λΉνκ³ μκ³ , λ²μ ν΅νλ₯Ό λ°ννλ κ³³μ΄μΌ. μ€μμνμ΄ ν΅νμ μ± μ ν΅ν΄ κ²½μ μ±μ₯μ μ§μνκ³ , λ¬Όκ°λ₯Ό μ‘°μ ν΄ κ²½μ λ₯Ό κ΄λ¦¬νλκ±°μΌ. μ€μμνμ΄ λμ λ무 λ§μ΄ νλ©΄ λ¬Όκ°κ° μ€λ₯΄κ³ , λμ λ무 λ§μ΄ κ±·μΌλ©΄ κ²½μ κ° μΉ¨μ²΄λλλ°, μ€μμνμ κ²½μ κ° μμ λ μ μκ² λ ν΅νλμ μ‘°μ νλκ±°μΌ. μ€μμνμ κΈμ΅μμ€ν μ μμ μ λ΄λΉνκ³ μμ΄. λ§μ½ μ΄λ€ μνμ΄ λμΆμ λ무 λ§μ΄ ν΄μ μκΈ°μ μ²νλ€λ©΄, μ€μμνμ μνμ λμ μ€ μνμ μ§μν΄μ κΈμ΅μμ€ν μ μμ μ μ§ν¬ μ μκ² ν΄. λ§μ§λ§μΌλ‘ μ€μμνμ λ²μ ν΅νλ₯Ό λ°ννλ κ³³μ΄μΌ. λ²μ ν΅νλ μ λΆκ° μ§μ ν ννλ‘, μ λΆκ° 보μ¦νλ ν΅νλΌλκ±°μΌ. λ²μ ν΅νλ μ°λ¦¬κ° λ§μ΄ μ¬μ©νλ ννμΈλ°, μ€μμνμ λ²μ ν΅νλ₯Ό λ°ννκ³ μ ν΅μμΌ κ²½μ κ° μννκ² λμκ° μ μκ² ν΄. μ΄λ κ² μ€μμνμ κ²½μ λ₯Ό κ΄λ¦¬νλ μν μ νκ³ , ν΅νμ μ± , κΈμ΅μμ€ν μ μμ μ λ΄λΉνκ³ , λ²μ ν΅νλ₯Ό λ°νν΄μ κ²½μ κ° μννκ² λμκ° μ μκ² ν΄.