train

This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9948
  • Macro F1: 0.7856
  • Precision: 0.7820
  • Recall: 0.7956
  • Kappa: 0.6940
  • Accuracy: 0.7956

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 128
  • seed: 25
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Macro F1 Precision Recall Kappa Accuracy
No log 1.0 101 1.1562 0.6031 0.5561 0.7044 0.4967 0.7044
No log 2.0 203 0.9119 0.7151 0.7107 0.7672 0.6236 0.7672
No log 3.0 304 0.8493 0.7280 0.7139 0.7734 0.6381 0.7734
No log 4.0 406 0.8087 0.7455 0.7632 0.7648 0.6421 0.7648
0.9431 5.0 507 0.7735 0.7779 0.7741 0.7931 0.6858 0.7931
0.9431 6.0 609 0.8201 0.7753 0.7735 0.7869 0.6797 0.7869
0.9431 7.0 710 0.8564 0.7886 0.7883 0.8017 0.7004 0.8017
0.9431 8.0 812 0.8712 0.7799 0.7754 0.7894 0.6854 0.7894
0.9431 9.0 913 0.9142 0.7775 0.7751 0.7869 0.6811 0.7869
0.2851 10.0 1015 0.9007 0.7820 0.7764 0.7943 0.6913 0.7943
0.2851 11.0 1116 0.9425 0.7859 0.7825 0.7956 0.6940 0.7956
0.2851 12.0 1218 0.9798 0.7815 0.7797 0.7906 0.6869 0.7906
0.2851 13.0 1319 0.9895 0.7895 0.7860 0.7993 0.7003 0.7993
0.2851 14.0 1421 0.9872 0.7854 0.7813 0.7943 0.6935 0.7943
0.1273 14.93 1515 0.9948 0.7856 0.7820 0.7956 0.6940 0.7956

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.1+cu118
  • Tokenizers 0.13.3
Downloads last month
1
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.