Is_there_relation

This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8855
  • Macro F1: 0.7979
  • Precision: 0.8002
  • Recall: 0.7995
  • Kappa: 0.5894
  • Accuracy: 0.7995

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 128
  • seed: 25
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Macro F1 Precision Recall Kappa Accuracy
No log 1.0 218 0.5160 0.7251 0.7659 0.7398 0.4511 0.7398
No log 2.0 437 0.4608 0.8014 0.8108 0.8049 0.5970 0.8049
0.4812 3.0 655 0.5087 0.7864 0.7900 0.7886 0.5661 0.7886
0.4812 4.0 874 0.5219 0.8107 0.8118 0.8103 0.6177 0.8103
0.2407 5.0 1092 0.5657 0.8319 0.8416 0.8347 0.6588 0.8347
0.2407 6.0 1311 0.6980 0.7988 0.8074 0.8022 0.5917 0.8022
0.1383 7.0 1529 0.7769 0.7933 0.8017 0.7967 0.5805 0.7967
0.1383 8.0 1748 0.7336 0.8059 0.8087 0.8076 0.6058 0.8076
0.1383 9.0 1966 0.7426 0.7988 0.8074 0.8022 0.5917 0.8022
0.0878 10.0 2185 0.8211 0.8017 0.8098 0.8049 0.5975 0.8049
0.0878 11.0 2403 0.8737 0.7955 0.7969 0.7967 0.5846 0.7967
0.0573 12.0 2622 0.9043 0.7900 0.7914 0.7913 0.5735 0.7913
0.0573 13.0 2840 0.8937 0.7906 0.7909 0.7913 0.5751 0.7913
0.0423 14.0 3059 0.9004 0.8013 0.8019 0.8022 0.5967 0.8022
0.0423 14.97 3270 0.8855 0.7979 0.8002 0.7995 0.5894 0.7995

Framework versions

  • Transformers 4.29.2
  • Pytorch 2.0.1+cu118
  • Tokenizers 0.13.3
Downloads last month
10
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.