pythia-70m_tatsu-lab_alpaca_farm_sftsd0_policy_pythia-6.9b_gold_internlm2-7b_noise0.25_rmsd4
This model is a fine-tuned version of RylanSchaeffer/EleutherAI_pythia-70m_tatsu-lab_alpaca_farm_sftseed0 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.7699
- Accuracy: 0.5050
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.025
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0 | 0 | 0.8960 | 0.4803 |
0.9577 | 0.0648 | 100 | 0.8893 | 0.4823 |
0.81 | 0.1296 | 200 | 0.8674 | 0.4904 |
0.7537 | 0.1944 | 300 | 0.8427 | 0.4981 |
0.8347 | 0.2592 | 400 | 0.8380 | 0.4946 |
0.7976 | 0.3239 | 500 | 0.8229 | 0.4946 |
0.7834 | 0.3887 | 600 | 0.8168 | 0.4946 |
0.8027 | 0.4535 | 700 | 0.8099 | 0.4869 |
0.8188 | 0.5183 | 800 | 0.8065 | 0.4865 |
0.7637 | 0.5831 | 900 | 0.7988 | 0.4950 |
0.7926 | 0.6479 | 1000 | 0.7960 | 0.5042 |
0.7726 | 0.7127 | 1100 | 0.7893 | 0.5035 |
0.7945 | 0.7775 | 1200 | 0.7892 | 0.5019 |
0.81 | 0.8422 | 1300 | 0.7858 | 0.5058 |
0.7574 | 0.9070 | 1400 | 0.7858 | 0.4973 |
0.7841 | 0.9718 | 1500 | 0.7824 | 0.5093 |
0.8161 | 1.0366 | 1600 | 0.7836 | 0.5035 |
0.8016 | 1.1014 | 1700 | 0.7855 | 0.4992 |
0.7499 | 1.1662 | 1800 | 0.7831 | 0.4977 |
0.7906 | 1.2310 | 1900 | 0.7786 | 0.4985 |
0.7698 | 1.2958 | 2000 | 0.7800 | 0.4973 |
0.7582 | 1.3605 | 2100 | 0.7817 | 0.4977 |
0.7981 | 1.4253 | 2200 | 0.7840 | 0.4996 |
0.8067 | 1.4901 | 2300 | 0.7814 | 0.5008 |
0.7667 | 1.5549 | 2400 | 0.7764 | 0.5031 |
0.7847 | 1.6197 | 2500 | 0.7810 | 0.5004 |
0.7858 | 1.6845 | 2600 | 0.7790 | 0.5008 |
0.74 | 1.7493 | 2700 | 0.7762 | 0.5012 |
0.7837 | 1.8141 | 2800 | 0.7784 | 0.5023 |
0.7615 | 1.8788 | 2900 | 0.7793 | 0.5008 |
0.7623 | 1.9436 | 3000 | 0.7735 | 0.4992 |
0.7823 | 2.0084 | 3100 | 0.7762 | 0.4954 |
0.7797 | 2.0732 | 3200 | 0.7762 | 0.5012 |
0.7497 | 2.1380 | 3300 | 0.7728 | 0.5027 |
0.7806 | 2.2028 | 3400 | 0.7739 | 0.4973 |
0.7525 | 2.2676 | 3500 | 0.7724 | 0.5035 |
0.7927 | 2.3324 | 3600 | 0.7731 | 0.5027 |
0.8046 | 2.3971 | 3700 | 0.7749 | 0.5073 |
0.7185 | 2.4619 | 3800 | 0.7744 | 0.5089 |
0.7616 | 2.5267 | 3900 | 0.7752 | 0.4942 |
0.7214 | 2.5915 | 4000 | 0.7733 | 0.5004 |
0.7663 | 2.6563 | 4100 | 0.7715 | 0.4961 |
0.7572 | 2.7211 | 4200 | 0.7735 | 0.4985 |
0.7258 | 2.7859 | 4300 | 0.7739 | 0.4988 |
0.7932 | 2.8507 | 4400 | 0.7738 | 0.5023 |
0.7513 | 2.9155 | 4500 | 0.7739 | 0.5058 |
0.7583 | 2.9802 | 4600 | 0.7748 | 0.4973 |
0.7102 | 3.0450 | 4700 | 0.7762 | 0.5050 |
0.7628 | 3.1098 | 4800 | 0.7716 | 0.5023 |
0.7901 | 3.1746 | 4900 | 0.7751 | 0.5081 |
0.77 | 3.2394 | 5000 | 0.7746 | 0.5023 |
0.7504 | 3.3042 | 5100 | 0.7721 | 0.5023 |
0.7538 | 3.3690 | 5200 | 0.7732 | 0.5027 |
0.7029 | 3.4338 | 5300 | 0.7738 | 0.4950 |
0.7198 | 3.4985 | 5400 | 0.7716 | 0.5054 |
0.7726 | 3.5633 | 5500 | 0.7683 | 0.5050 |
0.7792 | 3.6281 | 5600 | 0.7746 | 0.4923 |
0.7268 | 3.6929 | 5700 | 0.7750 | 0.5008 |
0.7532 | 3.7577 | 5800 | 0.7722 | 0.5046 |
0.766 | 3.8225 | 5900 | 0.7715 | 0.5015 |
0.7876 | 3.8873 | 6000 | 0.7760 | 0.4938 |
0.8172 | 3.9521 | 6100 | 0.7728 | 0.4988 |
0.7625 | 4.0168 | 6200 | 0.7762 | 0.5 |
0.7819 | 4.0816 | 6300 | 0.7766 | 0.5042 |
0.7582 | 4.1464 | 6400 | 0.7733 | 0.5042 |
0.79 | 4.2112 | 6500 | 0.7715 | 0.5027 |
0.7344 | 4.2760 | 6600 | 0.7693 | 0.5012 |
0.8079 | 4.3408 | 6700 | 0.7730 | 0.5066 |
0.7391 | 4.4056 | 6800 | 0.7745 | 0.4992 |
0.763 | 4.4704 | 6900 | 0.7733 | 0.5039 |
0.7363 | 4.5351 | 7000 | 0.7727 | 0.5031 |
0.7584 | 4.5999 | 7100 | 0.7723 | 0.5015 |
0.7587 | 4.6647 | 7200 | 0.7707 | 0.4934 |
0.7168 | 4.7295 | 7300 | 0.7711 | 0.5081 |
0.7479 | 4.7943 | 7400 | 0.7718 | 0.4981 |
0.7739 | 4.8591 | 7500 | 0.7703 | 0.5073 |
0.7814 | 4.9239 | 7600 | 0.7719 | 0.5004 |
0.7487 | 4.9887 | 7700 | 0.7695 | 0.5054 |
Framework versions
- Transformers 4.42.4
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 6
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.