Edit model card

phobert-base-v2-70k-khduoi

This model is a fine-tuned version of vinai/phobert-base-v2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6366
  • Accuracy: 0.9152
  • F1: 0.9155

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
No log 0.2909 500 0.2524 0.8975 0.8969
No log 0.5817 1000 0.2447 0.9009 0.8999
No log 0.8726 1500 0.2319 0.9018 0.9015
0.263 1.1635 2000 0.2539 0.9060 0.9063
0.263 1.4543 2500 0.2433 0.9017 0.9029
0.263 1.7452 3000 0.2358 0.9100 0.9099
0.2084 2.0361 3500 0.2755 0.9044 0.9059
0.2084 2.3269 4000 0.2547 0.9102 0.9100
0.2084 2.6178 4500 0.2223 0.9109 0.9125
0.2084 2.9087 5000 0.2189 0.9150 0.9150
0.1729 3.1995 5500 0.2825 0.9101 0.9112
0.1729 3.4904 6000 0.2663 0.9110 0.9121
0.1729 3.7813 6500 0.2367 0.9157 0.9165
0.1448 4.0721 7000 0.2891 0.9118 0.9121
0.1448 4.3630 7500 0.3180 0.9042 0.9060
0.1448 4.6539 8000 0.2441 0.9117 0.9126
0.1448 4.9447 8500 0.2638 0.9142 0.9145
0.1234 5.2356 9000 0.3499 0.9130 0.9141
0.1234 5.5265 9500 0.3086 0.9123 0.9135
0.1234 5.8173 10000 0.3203 0.9141 0.9140
0.1033 6.1082 10500 0.3234 0.9170 0.9173
0.1033 6.3991 11000 0.3367 0.9095 0.9105
0.1033 6.6899 11500 0.3402 0.9157 0.9159
0.1033 6.9808 12000 0.3843 0.9107 0.9111
0.0904 7.2717 12500 0.3559 0.9182 0.9182
0.0904 7.5625 13000 0.3646 0.9079 0.9096
0.0904 7.8534 13500 0.3392 0.9130 0.9137
0.0785 8.1443 14000 0.4064 0.9155 0.9164
0.0785 8.4351 14500 0.4013 0.9126 0.9135
0.0785 8.7260 15000 0.4351 0.9124 0.9135
0.0701 9.0169 15500 0.4190 0.9158 0.9161
0.0701 9.3077 16000 0.4567 0.9116 0.9126
0.0701 9.5986 16500 0.4230 0.9147 0.9147
0.0701 9.8895 17000 0.3956 0.9148 0.9150
0.0599 10.1803 17500 0.4854 0.9133 0.9135
0.0599 10.4712 18000 0.4958 0.9156 0.9158
0.0599 10.7621 18500 0.4552 0.9148 0.9146
0.0536 11.0529 19000 0.4678 0.9160 0.9163
0.0536 11.3438 19500 0.4802 0.9142 0.9135
0.0536 11.6347 20000 0.5360 0.9130 0.9133
0.0536 11.9255 20500 0.5305 0.9133 0.9137
0.0464 12.2164 21000 0.5413 0.9115 0.9122
0.0464 12.5073 21500 0.4867 0.9150 0.9155
0.0464 12.7981 22000 0.5100 0.9147 0.9153
0.0446 13.0890 22500 0.5750 0.9161 0.9157
0.0446 13.3799 23000 0.5742 0.9174 0.9172
0.0446 13.6707 23500 0.5790 0.9142 0.9146
0.0446 13.9616 24000 0.5476 0.9151 0.9150
0.0374 14.2525 24500 0.5621 0.9160 0.9163
0.0374 14.5433 25000 0.5633 0.9140 0.9146
0.0374 14.8342 25500 0.5496 0.9148 0.9152
0.0341 15.1251 26000 0.5869 0.9138 0.9142
0.0341 15.4159 26500 0.5901 0.9142 0.9141
0.0341 15.7068 27000 0.5548 0.9154 0.9158
0.0303 15.9977 27500 0.5832 0.9141 0.9136
0.0303 16.2885 28000 0.6070 0.9148 0.9157
0.0303 16.5794 28500 0.6208 0.9159 0.9162
0.0303 16.8703 29000 0.6134 0.9137 0.9143
0.0273 17.1611 29500 0.6021 0.9166 0.9168
0.0273 17.4520 30000 0.6063 0.9150 0.9153
0.0273 17.7429 30500 0.5942 0.9135 0.9142
0.0254 18.0337 31000 0.6073 0.9150 0.9155
0.0254 18.3246 31500 0.6304 0.9165 0.9167
0.0254 18.6155 32000 0.6121 0.9155 0.9157
0.0254 18.9063 32500 0.6087 0.9153 0.9156
0.0221 19.1972 33000 0.6234 0.9147 0.9151
0.0221 19.4881 33500 0.6312 0.9145 0.9149
0.0221 19.7789 34000 0.6366 0.9152 0.9155

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
5
Safetensors
Model size
135M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for RonTon05/phobert-base-v2-70k-khduoi

Finetuned
(182)
this model