metadata
base_model: vinai/phobert-base-v2
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: PhoBert_Lexical_Meta_Dataset59KBoDuoi
results: []
PhoBert_Lexical_Meta_Dataset59KBoDuoi
This model is a fine-tuned version of vinai/phobert-base-v2 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.5530
- Accuracy: 0.9002
- F1: 0.9006
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
No log | 0.2558 | 200 | 0.3462 | 0.8484 | 0.8450 |
No log | 0.5115 | 400 | 0.3203 | 0.8626 | 0.8645 |
No log | 0.7673 | 600 | 0.2886 | 0.8742 | 0.8747 |
0.3511 | 1.0230 | 800 | 0.2991 | 0.8824 | 0.8817 |
0.3511 | 1.2788 | 1000 | 0.2882 | 0.8800 | 0.8805 |
0.3511 | 1.5345 | 1200 | 0.2897 | 0.8817 | 0.8827 |
0.3511 | 1.7903 | 1400 | 0.2674 | 0.8856 | 0.8859 |
0.2582 | 2.0460 | 1600 | 0.2761 | 0.8855 | 0.8865 |
0.2582 | 2.3018 | 1800 | 0.2788 | 0.8860 | 0.8869 |
0.2582 | 2.5575 | 2000 | 0.2718 | 0.8848 | 0.8859 |
0.2582 | 2.8133 | 2200 | 0.2749 | 0.8910 | 0.8919 |
0.2136 | 3.0691 | 2400 | 0.2984 | 0.8900 | 0.8909 |
0.2136 | 3.3248 | 2600 | 0.2847 | 0.8902 | 0.8896 |
0.2136 | 3.5806 | 2800 | 0.2810 | 0.8900 | 0.8912 |
0.2136 | 3.8363 | 3000 | 0.3029 | 0.8869 | 0.8887 |
0.1805 | 4.0921 | 3200 | 0.2973 | 0.8935 | 0.8945 |
0.1805 | 4.3478 | 3400 | 0.3033 | 0.8938 | 0.8941 |
0.1805 | 4.6036 | 3600 | 0.2808 | 0.8927 | 0.8938 |
0.1805 | 4.8593 | 3800 | 0.3069 | 0.8923 | 0.8936 |
0.1529 | 5.1151 | 4000 | 0.3200 | 0.8877 | 0.8891 |
0.1529 | 5.3708 | 4200 | 0.3184 | 0.8958 | 0.8966 |
0.1529 | 5.6266 | 4400 | 0.3000 | 0.8917 | 0.8927 |
0.1529 | 5.8824 | 4600 | 0.3315 | 0.8956 | 0.8958 |
0.1295 | 6.1381 | 4800 | 0.3320 | 0.8965 | 0.8974 |
0.1295 | 6.3939 | 5000 | 0.3344 | 0.8975 | 0.8980 |
0.1295 | 6.6496 | 5200 | 0.3315 | 0.8952 | 0.8948 |
0.1295 | 6.9054 | 5400 | 0.3424 | 0.8950 | 0.8951 |
0.1123 | 7.1611 | 5600 | 0.3715 | 0.8918 | 0.8929 |
0.1123 | 7.4169 | 5800 | 0.3718 | 0.8959 | 0.8963 |
0.1123 | 7.6726 | 6000 | 0.3384 | 0.8959 | 0.8965 |
0.1123 | 7.9284 | 6200 | 0.3635 | 0.8907 | 0.8920 |
0.0958 | 8.1841 | 6400 | 0.3753 | 0.8969 | 0.8979 |
0.0958 | 8.4399 | 6600 | 0.4053 | 0.8968 | 0.8969 |
0.0958 | 8.6957 | 6800 | 0.3732 | 0.8968 | 0.8975 |
0.0958 | 8.9514 | 7000 | 0.4011 | 0.8986 | 0.8987 |
0.0816 | 9.2072 | 7200 | 0.4057 | 0.8975 | 0.8980 |
0.0816 | 9.4629 | 7400 | 0.4227 | 0.8945 | 0.8956 |
0.0816 | 9.7187 | 7600 | 0.4299 | 0.8977 | 0.8979 |
0.0816 | 9.9744 | 7800 | 0.4030 | 0.8979 | 0.8984 |
0.0715 | 10.2302 | 8000 | 0.4388 | 0.8973 | 0.8978 |
0.0715 | 10.4859 | 8200 | 0.4462 | 0.8969 | 0.8968 |
0.0715 | 10.7417 | 8400 | 0.4158 | 0.8974 | 0.8975 |
0.0635 | 10.9974 | 8600 | 0.4339 | 0.8977 | 0.8983 |
0.0635 | 11.2532 | 8800 | 0.4798 | 0.8994 | 0.8998 |
0.0635 | 11.5090 | 9000 | 0.4610 | 0.8957 | 0.8964 |
0.0635 | 11.7647 | 9200 | 0.4808 | 0.8940 | 0.8947 |
0.057 | 12.0205 | 9400 | 0.4701 | 0.8958 | 0.8955 |
0.057 | 12.2762 | 9600 | 0.4913 | 0.8945 | 0.8956 |
0.057 | 12.5320 | 9800 | 0.5026 | 0.8967 | 0.8973 |
0.057 | 12.7877 | 10000 | 0.4739 | 0.8969 | 0.8979 |
0.0507 | 13.0435 | 10200 | 0.4741 | 0.8966 | 0.8966 |
0.0507 | 13.2992 | 10400 | 0.4962 | 0.8995 | 0.8999 |
0.0507 | 13.5550 | 10600 | 0.5051 | 0.8969 | 0.8977 |
0.0507 | 13.8107 | 10800 | 0.4855 | 0.8970 | 0.8977 |
0.045 | 14.0665 | 11000 | 0.4995 | 0.8983 | 0.8990 |
0.045 | 14.3223 | 11200 | 0.5144 | 0.8972 | 0.8976 |
0.045 | 14.5780 | 11400 | 0.5057 | 0.8980 | 0.8984 |
0.045 | 14.8338 | 11600 | 0.5240 | 0.8995 | 0.9001 |
0.0422 | 15.0895 | 11800 | 0.5100 | 0.8991 | 0.8995 |
0.0422 | 15.3453 | 12000 | 0.5252 | 0.9000 | 0.9005 |
0.0422 | 15.6010 | 12200 | 0.5324 | 0.8981 | 0.8988 |
0.0422 | 15.8568 | 12400 | 0.5343 | 0.8997 | 0.9001 |
0.0372 | 16.1125 | 12600 | 0.5277 | 0.8990 | 0.8993 |
0.0372 | 16.3683 | 12800 | 0.5433 | 0.8992 | 0.8997 |
0.0372 | 16.6240 | 13000 | 0.5463 | 0.8986 | 0.8993 |
0.0372 | 16.8798 | 13200 | 0.5427 | 0.8980 | 0.8984 |
0.0338 | 17.1355 | 13400 | 0.5485 | 0.9001 | 0.9005 |
0.0338 | 17.3913 | 13600 | 0.5608 | 0.8966 | 0.8972 |
0.0338 | 17.6471 | 13800 | 0.5517 | 0.9000 | 0.9004 |
0.0338 | 17.9028 | 14000 | 0.5563 | 0.8997 | 0.9002 |
0.0315 | 18.1586 | 14200 | 0.5488 | 0.8995 | 0.8999 |
0.0315 | 18.4143 | 14400 | 0.5480 | 0.8992 | 0.8996 |
0.0315 | 18.6701 | 14600 | 0.5492 | 0.9002 | 0.9006 |
0.0315 | 18.9258 | 14800 | 0.5491 | 0.9014 | 0.9017 |
0.0298 | 19.1816 | 15000 | 0.5498 | 0.9005 | 0.9007 |
0.0298 | 19.4373 | 15200 | 0.5508 | 0.9007 | 0.9011 |
0.0298 | 19.6931 | 15400 | 0.5525 | 0.9002 | 0.9006 |
0.0298 | 19.9488 | 15600 | 0.5530 | 0.9002 | 0.9006 |
Framework versions
- Transformers 4.42.4
- Pytorch 2.1.2
- Datasets 2.19.2
- Tokenizers 0.19.1