File size: 67,085 Bytes
880d5ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
---
language:
- bn
- cs
- de
- en
- et
- fi
- fr
- gu
- ha
- hi
- is
- ja
- kk
- km
- lt
- lv
- pl
- ps
- ru
- ta
- tr
- uk
- xh
- zh
- zu
- ne
- ro
- si
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:1327190
- loss:CoSENTLoss
base_model: sentence-transformers/distiluse-base-multilingual-cased-v2
widget:
- source_sentence: यहाँका केही धार्मिक सम्पदाहरू यस प्रकार रहेका छन्।
  sentences:
  - A party works journalists from advertisements about a massive Himalayan post.
  - Some religious affiliations here remain.
  - In Spain, the strict opposition of Roman Catholic churches is found to have assumed
    a marriage similar to male beach wives.
- source_sentence: '"We can use this discovery to target both the assembly and stability
    of the capsid, to either prevent the formation of the virus when it infects the
    host cell, or break it apart after it''s formed," Luque said. "This could facilitate
    the characterization and identification of antiviral targets for viruses sharing
    the same icosahedral layout."'
  sentences:
  - FC inter have today released Shefki Kuqi from the club's representative team coach
    duties.
  - '"Wir können diese Entdeckung nutzen, um sowohl die Montage als auch die Stabilität
    des Kapsids anzustreben, um entweder die Bildung des Virus zu verhindern, wenn
    es die Wirtszelle infiziert oder nach seiner Bildung auseinanderbricht", sagte
    Luque. "Dies könnte die Charakterisierung und Identifizierung von antiviralen
    Zielen für Viren erleichtern, die das gleiche ikosaedrische Layout teilen".'
  - Quellen sagen, Jones sei „wütend“, als das goldene Mädchen des Fernsehens bei
    einem angespannten Treffen am Dienstag im Hauptquartier seines Geschäftsimperiums
    in Marlow, Buckinghamshire, zugab, dass ihre neuen Deals - im Wert von bis zu
    1,5 Millionen Pfund - bedeuteten, dass sie nicht mehr genug Zeit hatte, sich ihrer
    Hausbekleidungs- und Zubehörmarke Truly zu widmen.
- source_sentence: He possesses a pistol with silver bullets for protection from vampires
    and werewolves.
  sentences:
  - Er besitzt eine Pistole mit silbernen Kugeln zum Schutz vor Vampiren und Werwölfen.
  - Bibimbap umfasst Reis, Spinat, Rettich, Bohnensprossen.
  - BSAC profitierte auch von den großen, aber nicht unbeschränkten persönlichen Vermögen
    von Rhodos und Beit vor ihrem Tod.
- source_sentence: To the west of the Badger Head Inlier is the Port Sorell Formation,
    a tectonic mélange of marine sediments and dolerite.
  sentences:
  - Er brennt einen Speer und brennt Flammen aus seinem Mund, wenn er wütend ist.
  - Westlich des Badger Head Inlier befindet sich die Port Sorell Formation, eine
    tektonische Mischung aus Sedimenten und Dolerit.
  - Public Lynching and Mob Violence under Modi Government
- source_sentence: Garnizoana otomană se retrage în sudul Dunării, iar după 164 de
    ani cetatea intră din nou sub stăpânirea europenilor.
  sentences:
  - This is because, once again, we have taken into account the fact that we have
    adopted a large number of legislative proposals.
  - Helsinki University ranks 75th among universities for 2010.
  - Ottoman garnisoana is withdrawing into the south of the Danube and, after 164
    years, it is once again under the control of Europeans.
datasets:
- RicardoRei/wmt-da-human-evaluation
- wmt/wmt20_mlqe_task1
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
model-index:
- name: SentenceTransformer based on sentence-transformers/distiluse-base-multilingual-cased-v2
  results:
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts eval
      type: sts-eval
    metrics:
    - type: pearson_cosine
      value: 0.42415369784945883
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.4175469519194782
      name: Spearman Cosine
    - type: pearson_cosine
      value: 0.0772713008408403
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.13050905562438264
      name: Spearman Cosine
    - type: pearson_cosine
      value: 0.16731845692612535
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.18366199919315862
      name: Spearman Cosine
    - type: pearson_cosine
      value: 0.3567214608388243
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.3656734148567112
      name: Spearman Cosine
    - type: pearson_cosine
      value: 0.41267092498678554
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.41036446071667193
      name: Spearman Cosine
    - type: pearson_cosine
      value: 0.5254563854630899
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.4785530551765603
      name: Spearman Cosine
    - type: pearson_cosine
      value: 0.31194241573567016
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.2814160300891252
      name: Spearman Cosine
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test
      type: sts-test
    metrics:
    - type: pearson_cosine
      value: 0.4253603788235729
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.4166117661445095
      name: Spearman Cosine
    - type: pearson_cosine
      value: 0.022187134575214738
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.04647559130832398
      name: Spearman Cosine
    - type: pearson_cosine
      value: 0.15979577569463932
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.2074497419832692
      name: Spearman Cosine
    - type: pearson_cosine
      value: 0.3698928748443983
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.3757690724227716
      name: Spearman Cosine
    - type: pearson_cosine
      value: 0.44937864470538347
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.45866193737582717
      name: Spearman Cosine
    - type: pearson_cosine
      value: 0.4466389646053608
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.4158920394678395
      name: Spearman Cosine
    - type: pearson_cosine
      value: 0.33243289478987115
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.2806845193699054
      name: Spearman Cosine
---

# SentenceTransformer based on sentence-transformers/distiluse-base-multilingual-cased-v2

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/distiluse-base-multilingual-cased-v2](https://huggingface.co./sentence-transformers/distiluse-base-multilingual-cased-v2) on the [wmt_da](https://huggingface.co./datasets/RicardoRei/wmt-da-human-evaluation), [mlqe_en_de](https://huggingface.co./datasets/wmt/wmt20_mlqe_task1), [mlqe_en_zh](https://huggingface.co./datasets/wmt/wmt20_mlqe_task1), [mlqe_et_en](https://huggingface.co./datasets/wmt/wmt20_mlqe_task1), [mlqe_ne_en](https://huggingface.co./datasets/wmt/wmt20_mlqe_task1), [mlqe_ro_en](https://huggingface.co./datasets/wmt/wmt20_mlqe_task1) and [mlqe_si_en](https://huggingface.co./datasets/wmt/wmt20_mlqe_task1) datasets. It maps sentences & paragraphs to a 512-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/distiluse-base-multilingual-cased-v2](https://huggingface.co./sentence-transformers/distiluse-base-multilingual-cased-v2) <!-- at revision dad0fa1ee4fa6e982d3adbce87c73c02e6aee838 -->
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 512 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Datasets:**
    - [wmt_da](https://huggingface.co./datasets/RicardoRei/wmt-da-human-evaluation)
    - [mlqe_en_de](https://huggingface.co./datasets/wmt/wmt20_mlqe_task1)
    - [mlqe_en_zh](https://huggingface.co./datasets/wmt/wmt20_mlqe_task1)
    - [mlqe_et_en](https://huggingface.co./datasets/wmt/wmt20_mlqe_task1)
    - [mlqe_ne_en](https://huggingface.co./datasets/wmt/wmt20_mlqe_task1)
    - [mlqe_ro_en](https://huggingface.co./datasets/wmt/wmt20_mlqe_task1)
    - [mlqe_si_en](https://huggingface.co./datasets/wmt/wmt20_mlqe_task1)
- **Languages:** bn, cs, de, en, et, fi, fr, gu, ha, hi, is, ja, kk, km, lt, lv, pl, ps, ru, ta, tr, uk, xh, zh, zu, ne, ro, si
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Dense({'in_features': 768, 'out_features': 512, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("RomainDarous/distiluse-base-multilingual-cased-v2-sts")
# Run inference
sentences = [
    'Garnizoana otomană se retrage în sudul Dunării, iar după 164 de ani cetatea intră din nou sub stăpânirea europenilor.',
    'Ottoman garnisoana is withdrawing into the south of the Danube and, after 164 years, it is once again under the control of Europeans.',
    'This is because, once again, we have taken into account the fact that we have adopted a large number of legislative proposals.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 512]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Semantic Similarity

* Datasets: `sts-eval`, `sts-test`, `sts-test`, `sts-test`, `sts-test`, `sts-test`, `sts-test` and `sts-test`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | sts-eval   | sts-test   |
|:--------------------|:-----------|:-----------|
| pearson_cosine      | 0.4242     | 0.3324     |
| **spearman_cosine** | **0.4175** | **0.2807** |

#### Semantic Similarity

* Dataset: `sts-eval`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.0773     |
| **spearman_cosine** | **0.1305** |

#### Semantic Similarity

* Dataset: `sts-eval`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.1673     |
| **spearman_cosine** | **0.1837** |

#### Semantic Similarity

* Dataset: `sts-eval`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.3567     |
| **spearman_cosine** | **0.3657** |

#### Semantic Similarity

* Dataset: `sts-eval`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.4127     |
| **spearman_cosine** | **0.4104** |

#### Semantic Similarity

* Dataset: `sts-eval`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.5255     |
| **spearman_cosine** | **0.4786** |

#### Semantic Similarity

* Dataset: `sts-eval`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.3119     |
| **spearman_cosine** | **0.2814** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Datasets

#### wmt_da

* Dataset: [wmt_da](https://huggingface.co./datasets/RicardoRei/wmt-da-human-evaluation) at [301de38](https://huggingface.co./datasets/RicardoRei/wmt-da-human-evaluation/tree/301de385bf05b0c00a8f4be74965e186164dd425)
* Size: 1,285,190 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                          | sentence2                                                                          | score                                                         |
  |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:--------------------------------------------------------------|
  | type    | string                                                                             | string                                                                             | float                                                         |
  | details | <ul><li>min: 4 tokens</li><li>mean: 37.09 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 37.12 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.7</li><li>max: 1.0</li></ul> |
* Samples:
  | sentence1                                                                                                                                                                                       | sentence2                                                                                                                                                                            | score             |
  |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------|
  | <code>Z dat ÚZIS také vyplývá, že se zastavil úbytek zdravotních sester v nemocnicích.</code>                                                                                                   | <code>The data from the IHIS also shows that the decline of nurses in hospitals has stopped.</code>                                                                                  | <code>0.47</code> |
  | <code>Я был самым гордым, самым пьяным девственником, которого кто-либо когда-либо видел.</code>                                                                                                | <code>I was the proudest, most drunk virgin anyone had ever seen.</code>                                                                                                             | <code>0.99</code> |
  | <code>Das Trampolinspringen hat einen gewissen Außenseitercharme, teilweise weil es für das unaufgeklärte Ohr passender für eine Clownsschule als die für die Olympischen Spiele klingt.</code> | <code>The trampoline jumping has some outsider charm, in part because it sounds more appropriate for the unenlightened ear for a clowns school than the one for the Olympics.</code> | <code>0.81</code> |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "pairwise_cos_sim"
  }
  ```

#### mlqe_en_de

* Dataset: [mlqe_en_de](https://huggingface.co./datasets/wmt/wmt20_mlqe_task1) at [0783ed2](https://huggingface.co./datasets/wmt/wmt20_mlqe_task1/tree/0783ed2bd75f44835df4ea664f9ccb85812c8563)
* Size: 7,000 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                          | sentence2                                                                          | score                                                           |
  |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------|
  | type    | string                                                                             | string                                                                             | float                                                           |
  | details | <ul><li>min: 11 tokens</li><li>mean: 23.78 tokens</li><li>max: 44 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 26.51 tokens</li><li>max: 54 tokens</li></ul> | <ul><li>min: 0.06</li><li>mean: 0.86</li><li>max: 1.0</li></ul> |
* Samples:
  | sentence1                                                                                                                | sentence2                                                                                                                                 | score                           |
  |:-------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------|
  | <code>Early Muslim traders and merchants visited Bengal while traversing the Silk Road in the first millennium.</code>   | <code>Frühe muslimische Händler und Kaufleute besuchten Bengalen, während sie im ersten Jahrtausend die Seidenstraße durchquerten.</code> | <code>0.9233333468437195</code> |
  | <code>While Fran dissipated shortly after that, the tropical wave progressed into the northeastern Pacific Ocean.</code> | <code>Während Fran kurz danach zerstreute, entwickelte sich die tropische Welle in den nordöstlichen Pazifischen Ozean.</code>            | <code>0.8899999856948853</code> |
  | <code>Distressed securities include such events as restructurings, recapitalizations, and bankruptcies.</code>           | <code>Zu den belasteten Wertpapieren gehören Restrukturierungen, Rekapitalisierungen und Insolvenzen.</code>                              | <code>0.9300000071525574</code> |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "pairwise_cos_sim"
  }
  ```

#### mlqe_en_zh

* Dataset: [mlqe_en_zh](https://huggingface.co./datasets/wmt/wmt20_mlqe_task1) at [0783ed2](https://huggingface.co./datasets/wmt/wmt20_mlqe_task1/tree/0783ed2bd75f44835df4ea664f9ccb85812c8563)
* Size: 7,000 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                          | score                                                            |
  |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------|
  | type    | string                                                                            | string                                                                             | float                                                            |
  | details | <ul><li>min: 9 tokens</li><li>mean: 24.09 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 12 tokens</li><li>mean: 29.93 tokens</li><li>max: 74 tokens</li></ul> | <ul><li>min: 0.01</li><li>mean: 0.68</li><li>max: 0.98</li></ul> |
* Samples:
  | sentence1                                                                                                                | sentence2                                                     | score                            |
  |:-------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------|:---------------------------------|
  | <code>In the late 1980s, the hotel's reputation declined, and it functioned partly as a "backpackers hangout."</code>    | <code>在 20 世纪 80 年代末 , 这家旅馆的声誉下降了 , 部分地起到了 "背包吊销" 的作用。</code> | <code>0.40666666626930237</code> |
  | <code>From 1870 to 1915, 36 million Europeans migrated away from Europe.</code>                                          | <code>从 1870 年到 1915 年 , 3, 600 万欧洲人从欧洲移民。</code>             | <code>0.8333333730697632</code>  |
  | <code>In some photos, the footpads did press into the regolith, especially when they moved sideways at touchdown.</code> | <code>在一些照片中 , 脚垫确实挤进了后台 , 尤其是当他们在触地时侧面移动时。</code>            | <code>0.33000001311302185</code> |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "pairwise_cos_sim"
  }
  ```

#### mlqe_et_en

* Dataset: [mlqe_et_en](https://huggingface.co./datasets/wmt/wmt20_mlqe_task1) at [0783ed2](https://huggingface.co./datasets/wmt/wmt20_mlqe_task1/tree/0783ed2bd75f44835df4ea664f9ccb85812c8563)
* Size: 7,000 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                          | sentence2                                                                          | score                                                           |
  |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------|
  | type    | string                                                                             | string                                                                             | float                                                           |
  | details | <ul><li>min: 14 tokens</li><li>mean: 31.88 tokens</li><li>max: 63 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 24.57 tokens</li><li>max: 56 tokens</li></ul> | <ul><li>min: 0.03</li><li>mean: 0.67</li><li>max: 1.0</li></ul> |
* Samples:
  | sentence1                                                                                                                         | sentence2                                                                                                                                      | score                           |
  |:----------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------|
  | <code>Gruusias vahistati president Mihhail Saakašvili pressibüroo nõunik Simon Kiladze, keda süüdistati spioneerimises.</code>    | <code>In Georgia, an adviser to the press office of President Mikhail Saakashvili, Simon Kiladze, was arrested and accused of spying.</code>   | <code>0.9466666579246521</code> |
  | <code>Nii teadmissotsioloogia pooldajad tavaliselt Kuhni tõlgendavadki, arendades tema vaated sõnaselgeks relativismiks.</code>   | <code>This is how supporters of knowledge sociology usually interpret Kuhn by developing his views into an explicit relativism.</code>         | <code>0.9366666674613953</code> |
  | <code>18. jaanuaril 2003 haarasid mitmeid Canberra eeslinnu võsapõlengud, milles hukkus neli ja sai vigastada 435 inimest.</code> | <code>On 18 January 2003, several of the suburbs of Canberra were seized by debt fires which killed four people and injured 435 people.</code> | <code>0.8666666150093079</code> |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "pairwise_cos_sim"
  }
  ```

#### mlqe_ne_en

* Dataset: [mlqe_ne_en](https://huggingface.co./datasets/wmt/wmt20_mlqe_task1) at [0783ed2](https://huggingface.co./datasets/wmt/wmt20_mlqe_task1/tree/0783ed2bd75f44835df4ea664f9ccb85812c8563)
* Size: 7,000 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                          | sentence2                                                                          | score                                                           |
  |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------|
  | type    | string                                                                             | string                                                                             | float                                                           |
  | details | <ul><li>min: 17 tokens</li><li>mean: 40.67 tokens</li><li>max: 77 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 24.66 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 0.01</li><li>mean: 0.39</li><li>max: 1.0</li></ul> |
* Samples:
  | sentence1                                                                                                   | sentence2                                                                                                  | score                            |
  |:------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------|:---------------------------------|
  | <code>सामान्‍य बजट प्रायः फेब्रुअरीका अंतिम कार्य दिवसमा लाईन्छ।</code>                                     | <code>A normal budget is usually awarded to the digital working day of February.</code>                    | <code>0.5600000023841858</code>  |
  | <code>कविताका यस्ता स्वरूपमा दुई, तिन वा चार पाउसम्मका मुक्तक, हाइकु, सायरी र लोकसूक्तिहरू पर्दछन् ।</code> | <code>The book consists of two, free of her or four paulets, haiku, Sairi, and locus in such forms.</code> | <code>0.23666666448116302</code> |
  | <code>ब्रिट्नीले यस बारेमा प्रतिक्रिया ब्यक्ता गरदै भनिन,"कुन ठूलो कुरा हो र?</code>                        | <code>Britney did not respond to this, saying "which is a big thing and a big thing?</code>                | <code>0.21666665375232697</code> |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "pairwise_cos_sim"
  }
  ```

#### mlqe_ro_en

* Dataset: [mlqe_ro_en](https://huggingface.co./datasets/wmt/wmt20_mlqe_task1) at [0783ed2](https://huggingface.co./datasets/wmt/wmt20_mlqe_task1/tree/0783ed2bd75f44835df4ea664f9ccb85812c8563)
* Size: 7,000 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                          | sentence2                                                                          | score                                                           |
  |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------|
  | type    | string                                                                             | string                                                                             | float                                                           |
  | details | <ul><li>min: 12 tokens</li><li>mean: 29.44 tokens</li><li>max: 60 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 22.38 tokens</li><li>max: 65 tokens</li></ul> | <ul><li>min: 0.01</li><li>mean: 0.68</li><li>max: 1.0</li></ul> |
* Samples:
  | sentence1                                                                                                                                                | sentence2                                                                                                                                                                                | score                            |
  |:---------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------|
  | <code>Orașul va fi împărțit în patru districte, iar suburbiile în 10 mahalale.</code>                                                                    | <code>The city will be divided into four districts and suburbs into 10 mahalals.</code>                                                                                                  | <code>0.4699999988079071</code>  |
  | <code>La scurt timp după aceasta, au devenit cunoscute debarcările germane de la Trondheim, Bergen și Stavanger, precum și luptele din Oslofjord.</code> | <code>In the light of the above, the Authority concludes that the aid granted to ADIF is compatible with the internal market pursuant to Article 61 (3) (c) of the EEA Agreement.</code> | <code>0.02666666731238365</code> |
  | <code>Până în vara 1791, în Clubul iacobinilor au dominat reprezentanții monarhismului liberal constituțional.</code>                                    | <code>Until the summer of 1791, representatives of liberal constitutional monarchism dominated in the Jacobins Club.</code>                                                              | <code>0.8733333349227905</code>  |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "pairwise_cos_sim"
  }
  ```

#### mlqe_si_en

* Dataset: [mlqe_si_en](https://huggingface.co./datasets/wmt/wmt20_mlqe_task1) at [0783ed2](https://huggingface.co./datasets/wmt/wmt20_mlqe_task1/tree/0783ed2bd75f44835df4ea664f9ccb85812c8563)
* Size: 7,000 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                          | score                                                           |
  |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------|
  | type    | string                                                                            | string                                                                             | float                                                           |
  | details | <ul><li>min: 8 tokens</li><li>mean: 18.19 tokens</li><li>max: 38 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 22.31 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 0.01</li><li>mean: 0.51</li><li>max: 1.0</li></ul> |
* Samples:
  | sentence1                                                                                                       | sentence2                                                                                                                               | score                            |
  |:----------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------|
  | <code>ඇපලෝ 4 සැටර්න් V බූස්ටරයේ ප්‍රථම පර්යේෂණ පියාසැරිය විය.</code>                                            | <code>The first research flight of the Apollo 4 Saturn V Booster.</code>                                                                | <code>0.7966666221618652</code>  |
  | <code>මෙහි අවපාතය සැලකීමේ දී, මෙහි 48%ක අවරෝහණය $ මිලියන 125කට අධික චිත්‍රපටයක් ලද තෙවන කුඩාම අවපාතය වේ.</code> | <code>In conjunction with the depression here, 48 % of obesity here is the third smallest depression in over $ 125 million film.</code> | <code>0.17666666209697723</code> |
  | <code>එසේම "බකමූණන් මගින් මෙම රාක්ෂසියගේ රාත්‍රී හැසිරීම සංකේතවත් වන බව" පවසයි.</code>                          | <code>Also "the owl says that this monster's night behavior is symbolic".</code>                                                        | <code>0.8799999952316284</code>  |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "pairwise_cos_sim"
  }
  ```

### Evaluation Datasets

#### wmt_da

* Dataset: [wmt_da](https://huggingface.co./datasets/RicardoRei/wmt-da-human-evaluation) at [301de38](https://huggingface.co./datasets/RicardoRei/wmt-da-human-evaluation/tree/301de385bf05b0c00a8f4be74965e186164dd425)
* Size: 1,285,190 evaluation samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                          | sentence2                                                                          | score                                                         |
  |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:--------------------------------------------------------------|
  | type    | string                                                                             | string                                                                             | float                                                         |
  | details | <ul><li>min: 4 tokens</li><li>mean: 36.52 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 36.59 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.7</li><li>max: 1.0</li></ul> |
* Samples:
  | sentence1                                                                                                                                                                                         | sentence2                                                                                                                                                                                              | score             |
  |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------|
  | <code>The note adds that should the departure from the White House be delayed, a second aircrew would be needed for the return flight due to duty-hour restrictions.</code>                       | <code>V poznámce se dodává, že pokud by se odlet z Bílého domu zpozdil, byla by pro zpáteční let kvůli omezení pracovní doby nutná druhá letecká posádka.</code>                                       | <code>0.95</code> |
  | <code>上半年电信网络诈骗犯罪上升七成 最高检总结特点-中新网</code>                                                                                                                                                          | <code>In the first half of the year, telecommunication network fraud crimes rose by 70%. The highest inspection summary characteristics-Zhongxin.com</code>                                            | <code>0.72</code> |
  | <code>Als zentrale Herausforderungen für den Bundesnachrichtendienst (BND) nannte Merkel den Kampf gegen die Verbreitung von Falschmeldungen im Internet und die Abwehr von Cyberattacken.</code> | <code>Merkel a cité la lutte contre la propagation de fausses nouvelles en ligne et la défense contre les cyberattaques comme des défis majeurs pour le service fédéral de renseignement (BND).</code> | <code>0.87</code> |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "pairwise_cos_sim"
  }
  ```

#### mlqe_en_de

* Dataset: [mlqe_en_de](https://huggingface.co./datasets/wmt/wmt20_mlqe_task1) at [0783ed2](https://huggingface.co./datasets/wmt/wmt20_mlqe_task1/tree/0783ed2bd75f44835df4ea664f9ccb85812c8563)
* Size: 1,000 evaluation samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                          | sentence2                                                                          | score                                                           |
  |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------|
  | type    | string                                                                             | string                                                                             | float                                                           |
  | details | <ul><li>min: 11 tokens</li><li>mean: 24.11 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 26.66 tokens</li><li>max: 55 tokens</li></ul> | <ul><li>min: 0.03</li><li>mean: 0.81</li><li>max: 1.0</li></ul> |
* Samples:
  | sentence1                                                                                                                                                       | sentence2                                                                                                                                                                                                   | score                           |
  |:----------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------|
  | <code>Resuming her patrols, Constitution managed to recapture the American sloop Neutrality on 27 March and, a few days later, the French ship Carteret.</code> | <code>Mit der Wiederaufnahme ihrer Patrouillen gelang es der Verfassung, am 27. März die amerikanische Schleuderneutralität und wenige Tage später das französische Schiff Carteret zurückzuerobern.</code> | <code>0.9033333659172058</code> |
  | <code>Blaine's nomination alienated many Republicans who viewed Blaine as ambitious and immoral.</code>                                                         | <code>Blaines Nominierung entfremdete viele Republikaner, die Blaine als ehrgeizig und unmoralisch betrachteten.</code>                                                                                     | <code>0.9216666221618652</code> |
  | <code>This initiated a brief correspondence between the two which quickly descended into political rancor.</code>                                               | <code>Dies leitete eine kurze Korrespondenz zwischen den beiden ein, die schnell zu politischem Groll abstieg.</code>                                                                                       | <code>0.878333330154419</code>  |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "pairwise_cos_sim"
  }
  ```

#### mlqe_en_zh

* Dataset: [mlqe_en_zh](https://huggingface.co./datasets/wmt/wmt20_mlqe_task1) at [0783ed2](https://huggingface.co./datasets/wmt/wmt20_mlqe_task1/tree/0783ed2bd75f44835df4ea664f9ccb85812c8563)
* Size: 1,000 evaluation samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                          | score                                                           |
  |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------|
  | type    | string                                                                            | string                                                                             | float                                                           |
  | details | <ul><li>min: 9 tokens</li><li>mean: 23.75 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 29.56 tokens</li><li>max: 67 tokens</li></ul> | <ul><li>min: 0.26</li><li>mean: 0.65</li><li>max: 0.9</li></ul> |
* Samples:
  | sentence1                                                                                                            | sentence2                                             | score                           |
  |:---------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------|:--------------------------------|
  | <code>Freeman briefly stayed with the king before returning to Accra via Whydah, Ahgwey and Little Popo.</code>      | <code>弗里曼在经过惠达、阿格威和小波波回到阿克拉之前与国王一起住了一会儿。</code>       | <code>0.6683333516120911</code> |
  | <code>Fantastic Fiction "Scratches in the Sky, Ben Peek, Agog!</code>                                                | <code>奇特的虚构 "天空中的碎片 , 本佩克 , 阿戈 !</code>               | <code>0.71833336353302</code>   |
  | <code>For Hermann Keller, the running quavers and semiquavers "suffuse the setting with health and strength."</code> | <code>对赫尔曼 · 凯勒来说 , 跑步的跳跃者和半跳跃者 "让环境充满健康和力量" 。</code> | <code>0.7066666483879089</code> |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "pairwise_cos_sim"
  }
  ```

#### mlqe_et_en

* Dataset: [mlqe_et_en](https://huggingface.co./datasets/wmt/wmt20_mlqe_task1) at [0783ed2](https://huggingface.co./datasets/wmt/wmt20_mlqe_task1/tree/0783ed2bd75f44835df4ea664f9ccb85812c8563)
* Size: 1,000 evaluation samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                          | score                                                           |
  |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------|
  | type    | string                                                                            | string                                                                             | float                                                           |
  | details | <ul><li>min: 12 tokens</li><li>mean: 32.4 tokens</li><li>max: 58 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 24.87 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 0.03</li><li>mean: 0.6</li><li>max: 0.99</li></ul> |
* Samples:
  | sentence1                                                                                     | sentence2                                                                                                             | score                            |
  |:----------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------|:---------------------------------|
  | <code>Jackson pidas seal kõne, öeldes, et James Brown on tema suurim inspiratsioon.</code>    | <code>Jackson gave a speech there saying that James Brown is his greatest inspiration.</code>                         | <code>0.9833333492279053</code>  |
  | <code>Kaanelugu rääkis loo kolme ungarlase üleelamistest Ungari revolutsiooni päevil.</code>  | <code>The life of the Man spoke of a story of three Hungarians living in the days of the Hungarian Revolution.</code> | <code>0.28999999165534973</code> |
  | <code>Teise maailmasõja ajal oli ta mitme Saksa juhatusele alluvate eesti väeosa ülem.</code> | <code>During World War II, he was the commander of several of the German leadership.</code>                           | <code>0.4516666829586029</code>  |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "pairwise_cos_sim"
  }
  ```

#### mlqe_ne_en

* Dataset: [mlqe_ne_en](https://huggingface.co./datasets/wmt/wmt20_mlqe_task1) at [0783ed2](https://huggingface.co./datasets/wmt/wmt20_mlqe_task1/tree/0783ed2bd75f44835df4ea664f9ccb85812c8563)
* Size: 1,000 evaluation samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                          | sentence2                                                                           | score                                                            |
  |:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:-----------------------------------------------------------------|
  | type    | string                                                                             | string                                                                              | float                                                            |
  | details | <ul><li>min: 17 tokens</li><li>mean: 41.03 tokens</li><li>max: 85 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 24.77 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 0.05</li><li>mean: 0.36</li><li>max: 0.92</li></ul> |
* Samples:
  | sentence1                                                                                 | sentence2                                                                              | score                            |
  |:------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------|:---------------------------------|
  | <code>१८९२ तिर भवानीदत्त पाण्डेले 'मुद्रा राक्षस'को अनुवाद गरे।</code>                    | <code>Around 1892, Bhavani Pandit translated the 'money monster'.</code>               | <code>0.8416666388511658</code>  |
  | <code>यस बच्चाको मुखले आमाको स्तन यस बच्चाको मुखले आमाको स्तन राम्ररी च्यापेको छ ।</code> | <code>The breasts of this child's mouth are taped well with the mother's mouth.</code> | <code>0.2150000035762787</code>  |
  | <code>बुवाको बन्दुक चोरेर हिँडेका बराललाई केआई सिंहले अब गोली ल्याउन लगाए ।...</code>     | <code>Kei Singh, who stole the boy's closet, took the bullet to bring it now..</code>  | <code>0.27000001072883606</code> |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "pairwise_cos_sim"
  }
  ```

#### mlqe_ro_en

* Dataset: [mlqe_ro_en](https://huggingface.co./datasets/wmt/wmt20_mlqe_task1) at [0783ed2](https://huggingface.co./datasets/wmt/wmt20_mlqe_task1/tree/0783ed2bd75f44835df4ea664f9ccb85812c8563)
* Size: 1,000 evaluation samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                          | sentence2                                                                        | score                                                           |
  |:--------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------|
  | type    | string                                                                             | string                                                                           | float                                                           |
  | details | <ul><li>min: 14 tokens</li><li>mean: 30.25 tokens</li><li>max: 59 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 22.7 tokens</li><li>max: 55 tokens</li></ul> | <ul><li>min: 0.01</li><li>mean: 0.68</li><li>max: 1.0</li></ul> |
* Samples:
  | sentence1                                                                                                                                           | sentence2                                                                                                                           | score                             |
  |:----------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------|
  | <code>Cornwallis se afla înconjurat pe uscat de forțe armate net superioare și retragerea pe mare era îndoielnică din cauza flotei franceze.</code> | <code>Cornwallis was surrounded by shore by higher armed forces and the sea withdrawal was doubtful due to the French fleet.</code> | <code>0.8199999928474426</code>   |
  | <code>thumbrightuprightDansatori [[cretani de muzică tradițională.</code>                                                                           | <code>Number of employees employed in the production of the like product in the Union.</code>                                       | <code>0.009999999776482582</code> |
  | <code>Potrivit documentelor vremii și tradiției orale, aceasta a fost cea mai grea perioadă din istoria orașului.</code>                            | <code>According to the documents of the oral weather and tradition, this was the hardest period in the city's history.</code>       | <code>0.5383332967758179</code>   |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "pairwise_cos_sim"
  }
  ```

#### mlqe_si_en

* Dataset: [mlqe_si_en](https://huggingface.co./datasets/wmt/wmt20_mlqe_task1) at [0783ed2](https://huggingface.co./datasets/wmt/wmt20_mlqe_task1/tree/0783ed2bd75f44835df4ea664f9ccb85812c8563)
* Size: 1,000 evaluation samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                          | score                                                            |
  |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------|
  | type    | string                                                                            | string                                                                             | float                                                            |
  | details | <ul><li>min: 8 tokens</li><li>mean: 18.12 tokens</li><li>max: 36 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 22.18 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 0.03</li><li>mean: 0.51</li><li>max: 0.99</li></ul> |
* Samples:
  | sentence1                                                                                                                               | sentence2                                                                                     | score                           |
  |:----------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------|:--------------------------------|
  | <code>එයට ශි්‍ර ලංකාවේ සාමය ඇති කිරිමටත් නැති කිරිමටත් පුළුවන්.</code>                                                                  | <code>It can also cause peace in Sri Lanka.</code>                                            | <code>0.3199999928474426</code> |
  | <code>ඔහු මනෝ විද්‍යාව, සමාජ විද්‍යාව, ඉතිහාසය හා සන්නිවේදනය යන විෂය ක්ෂේත්‍රයන් පිලිබදවද අධ්‍යයනයන් සිදු කිරීමට උත්සාහ කරන ලදි.</code> | <code>He attempted to do subjects in psychology, sociology, history and communication.</code> | <code>0.5366666913032532</code> |
  | <code>එහෙත් කිසිදු මිනිසෙක්‌ හෝ ගැහැනියෙක්‌ එලිමහනක නොවූහ.</code>                                                                       | <code>But no man or woman was eliminated.</code>                                              | <code>0.2783333361148834</code> |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "pairwise_cos_sim"
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `num_train_epochs`: 2
- `warmup_ratio`: 0.1

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 2
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch | Step  | Training Loss | wmt da loss | mlqe en de loss | mlqe en zh loss | mlqe et en loss | mlqe ne en loss | mlqe ro en loss | mlqe si en loss | sts-eval_spearman_cosine | sts-test_spearman_cosine |
|:-----:|:-----:|:-------------:|:-----------:|:---------------:|:---------------:|:---------------:|:---------------:|:---------------:|:---------------:|:------------------------:|:------------------------:|
| 0.4   | 6690  | 7.8421        | 7.5547      | 7.5619          | 7.5555          | 7.5327          | 7.5354          | 7.5109          | 7.5564          | 0.1989                   | -                        |
| 0.8   | 13380 | 7.552         | 7.5420      | 7.5757          | 7.5739          | 7.5185          | 7.5126          | 7.4994          | 7.5511          | 0.2336                   | -                        |
| 1.2   | 20070 | 7.5216        | 7.5465      | 7.6072          | 7.5942          | 7.5217          | 7.5141          | 7.4871          | 7.5471          | 0.2694                   | -                        |
| 1.6   | 26760 | 7.5024        | 7.5329      | 7.6123          | 7.5814          | 7.5230          | 7.5141          | 7.4679          | 7.5379          | 0.2866                   | -                        |
| 2.0   | 33450 | 7.495         | 7.5252      | 7.6106          | 7.5756          | 7.5201          | 7.5128          | 7.4725          | 7.5417          | 0.2814                   | 0.2807                   |


### Framework Versions
- Python: 3.11.10
- Sentence Transformers: 3.3.1
- Transformers: 4.47.1
- PyTorch: 2.3.1+cu121
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### CoSENTLoss
```bibtex
@online{kexuefm-8847,
    title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
    author={Su Jianlin},
    year={2022},
    month={Jan},
    url={https://kexue.fm/archives/8847},
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->