RomainDarous
commited on
Add new SentenceTransformer model
Browse files- 1_Pooling/config.json +10 -0
- 2_Dense/config.json +1 -0
- 2_Dense/model.safetensors +3 -0
- README.md +913 -0
- config.json +26 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +60 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
2_Dense/config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"in_features": 768, "out_features": 512, "bias": true, "activation_function": "torch.nn.modules.activation.Tanh"}
|
2_Dense/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d8e186727ab1944c63cd981dec7b02acdf05179e3041a112df3a1dc5d5f790cb
|
3 |
+
size 1575072
|
README.md
ADDED
@@ -0,0 +1,913 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- bn
|
4 |
+
- cs
|
5 |
+
- de
|
6 |
+
- en
|
7 |
+
- et
|
8 |
+
- fi
|
9 |
+
- fr
|
10 |
+
- gu
|
11 |
+
- ha
|
12 |
+
- hi
|
13 |
+
- is
|
14 |
+
- ja
|
15 |
+
- kk
|
16 |
+
- km
|
17 |
+
- lt
|
18 |
+
- lv
|
19 |
+
- pl
|
20 |
+
- ps
|
21 |
+
- ru
|
22 |
+
- ta
|
23 |
+
- tr
|
24 |
+
- uk
|
25 |
+
- xh
|
26 |
+
- zh
|
27 |
+
- zu
|
28 |
+
- ne
|
29 |
+
- ro
|
30 |
+
- si
|
31 |
+
tags:
|
32 |
+
- sentence-transformers
|
33 |
+
- sentence-similarity
|
34 |
+
- feature-extraction
|
35 |
+
- generated_from_trainer
|
36 |
+
- dataset_size:1327190
|
37 |
+
- loss:CoSENTLoss
|
38 |
+
base_model: sentence-transformers/distiluse-base-multilingual-cased-v2
|
39 |
+
widget:
|
40 |
+
- source_sentence: यहाँका केही धार्मिक सम्पदाहरू यस प्रकार रहेका छन्।
|
41 |
+
sentences:
|
42 |
+
- A party works journalists from advertisements about a massive Himalayan post.
|
43 |
+
- Some religious affiliations here remain.
|
44 |
+
- In Spain, the strict opposition of Roman Catholic churches is found to have assumed
|
45 |
+
a marriage similar to male beach wives.
|
46 |
+
- source_sentence: '"We can use this discovery to target both the assembly and stability
|
47 |
+
of the capsid, to either prevent the formation of the virus when it infects the
|
48 |
+
host cell, or break it apart after it''s formed," Luque said. "This could facilitate
|
49 |
+
the characterization and identification of antiviral targets for viruses sharing
|
50 |
+
the same icosahedral layout."'
|
51 |
+
sentences:
|
52 |
+
- FC inter have today released Shefki Kuqi from the club's representative team coach
|
53 |
+
duties.
|
54 |
+
- '"Wir können diese Entdeckung nutzen, um sowohl die Montage als auch die Stabilität
|
55 |
+
des Kapsids anzustreben, um entweder die Bildung des Virus zu verhindern, wenn
|
56 |
+
es die Wirtszelle infiziert oder nach seiner Bildung auseinanderbricht", sagte
|
57 |
+
Luque. "Dies könnte die Charakterisierung und Identifizierung von antiviralen
|
58 |
+
Zielen für Viren erleichtern, die das gleiche ikosaedrische Layout teilen".'
|
59 |
+
- Quellen sagen, Jones sei „wütend“, als das goldene Mädchen des Fernsehens bei
|
60 |
+
einem angespannten Treffen am Dienstag im Hauptquartier seines Geschäftsimperiums
|
61 |
+
in Marlow, Buckinghamshire, zugab, dass ihre neuen Deals - im Wert von bis zu
|
62 |
+
1,5 Millionen Pfund - bedeuteten, dass sie nicht mehr genug Zeit hatte, sich ihrer
|
63 |
+
Hausbekleidungs- und Zubehörmarke Truly zu widmen.
|
64 |
+
- source_sentence: He possesses a pistol with silver bullets for protection from vampires
|
65 |
+
and werewolves.
|
66 |
+
sentences:
|
67 |
+
- Er besitzt eine Pistole mit silbernen Kugeln zum Schutz vor Vampiren und Werwölfen.
|
68 |
+
- Bibimbap umfasst Reis, Spinat, Rettich, Bohnensprossen.
|
69 |
+
- BSAC profitierte auch von den großen, aber nicht unbeschränkten persönlichen Vermögen
|
70 |
+
von Rhodos und Beit vor ihrem Tod.
|
71 |
+
- source_sentence: To the west of the Badger Head Inlier is the Port Sorell Formation,
|
72 |
+
a tectonic mélange of marine sediments and dolerite.
|
73 |
+
sentences:
|
74 |
+
- Er brennt einen Speer und brennt Flammen aus seinem Mund, wenn er wütend ist.
|
75 |
+
- Westlich des Badger Head Inlier befindet sich die Port Sorell Formation, eine
|
76 |
+
tektonische Mischung aus Sedimenten und Dolerit.
|
77 |
+
- Public Lynching and Mob Violence under Modi Government
|
78 |
+
- source_sentence: Garnizoana otomană se retrage în sudul Dunării, iar după 164 de
|
79 |
+
ani cetatea intră din nou sub stăpânirea europenilor.
|
80 |
+
sentences:
|
81 |
+
- This is because, once again, we have taken into account the fact that we have
|
82 |
+
adopted a large number of legislative proposals.
|
83 |
+
- Helsinki University ranks 75th among universities for 2010.
|
84 |
+
- Ottoman garnisoana is withdrawing into the south of the Danube and, after 164
|
85 |
+
years, it is once again under the control of Europeans.
|
86 |
+
datasets:
|
87 |
+
- RicardoRei/wmt-da-human-evaluation
|
88 |
+
- wmt/wmt20_mlqe_task1
|
89 |
+
pipeline_tag: sentence-similarity
|
90 |
+
library_name: sentence-transformers
|
91 |
+
metrics:
|
92 |
+
- pearson_cosine
|
93 |
+
- spearman_cosine
|
94 |
+
model-index:
|
95 |
+
- name: SentenceTransformer based on sentence-transformers/distiluse-base-multilingual-cased-v2
|
96 |
+
results:
|
97 |
+
- task:
|
98 |
+
type: semantic-similarity
|
99 |
+
name: Semantic Similarity
|
100 |
+
dataset:
|
101 |
+
name: sts eval
|
102 |
+
type: sts-eval
|
103 |
+
metrics:
|
104 |
+
- type: pearson_cosine
|
105 |
+
value: 0.42415369784945883
|
106 |
+
name: Pearson Cosine
|
107 |
+
- type: spearman_cosine
|
108 |
+
value: 0.4175469519194782
|
109 |
+
name: Spearman Cosine
|
110 |
+
- type: pearson_cosine
|
111 |
+
value: 0.0772713008408403
|
112 |
+
name: Pearson Cosine
|
113 |
+
- type: spearman_cosine
|
114 |
+
value: 0.13050905562438264
|
115 |
+
name: Spearman Cosine
|
116 |
+
- type: pearson_cosine
|
117 |
+
value: 0.16731845692612535
|
118 |
+
name: Pearson Cosine
|
119 |
+
- type: spearman_cosine
|
120 |
+
value: 0.18366199919315862
|
121 |
+
name: Spearman Cosine
|
122 |
+
- type: pearson_cosine
|
123 |
+
value: 0.3567214608388243
|
124 |
+
name: Pearson Cosine
|
125 |
+
- type: spearman_cosine
|
126 |
+
value: 0.3656734148567112
|
127 |
+
name: Spearman Cosine
|
128 |
+
- type: pearson_cosine
|
129 |
+
value: 0.41267092498678554
|
130 |
+
name: Pearson Cosine
|
131 |
+
- type: spearman_cosine
|
132 |
+
value: 0.41036446071667193
|
133 |
+
name: Spearman Cosine
|
134 |
+
- type: pearson_cosine
|
135 |
+
value: 0.5254563854630899
|
136 |
+
name: Pearson Cosine
|
137 |
+
- type: spearman_cosine
|
138 |
+
value: 0.4785530551765603
|
139 |
+
name: Spearman Cosine
|
140 |
+
- type: pearson_cosine
|
141 |
+
value: 0.31194241573567016
|
142 |
+
name: Pearson Cosine
|
143 |
+
- type: spearman_cosine
|
144 |
+
value: 0.2814160300891252
|
145 |
+
name: Spearman Cosine
|
146 |
+
- task:
|
147 |
+
type: semantic-similarity
|
148 |
+
name: Semantic Similarity
|
149 |
+
dataset:
|
150 |
+
name: sts test
|
151 |
+
type: sts-test
|
152 |
+
metrics:
|
153 |
+
- type: pearson_cosine
|
154 |
+
value: 0.4253603788235729
|
155 |
+
name: Pearson Cosine
|
156 |
+
- type: spearman_cosine
|
157 |
+
value: 0.4166117661445095
|
158 |
+
name: Spearman Cosine
|
159 |
+
- type: pearson_cosine
|
160 |
+
value: 0.022187134575214738
|
161 |
+
name: Pearson Cosine
|
162 |
+
- type: spearman_cosine
|
163 |
+
value: 0.04647559130832398
|
164 |
+
name: Spearman Cosine
|
165 |
+
- type: pearson_cosine
|
166 |
+
value: 0.15979577569463932
|
167 |
+
name: Pearson Cosine
|
168 |
+
- type: spearman_cosine
|
169 |
+
value: 0.2074497419832692
|
170 |
+
name: Spearman Cosine
|
171 |
+
- type: pearson_cosine
|
172 |
+
value: 0.3698928748443983
|
173 |
+
name: Pearson Cosine
|
174 |
+
- type: spearman_cosine
|
175 |
+
value: 0.3757690724227716
|
176 |
+
name: Spearman Cosine
|
177 |
+
- type: pearson_cosine
|
178 |
+
value: 0.44937864470538347
|
179 |
+
name: Pearson Cosine
|
180 |
+
- type: spearman_cosine
|
181 |
+
value: 0.45866193737582717
|
182 |
+
name: Spearman Cosine
|
183 |
+
- type: pearson_cosine
|
184 |
+
value: 0.4466389646053608
|
185 |
+
name: Pearson Cosine
|
186 |
+
- type: spearman_cosine
|
187 |
+
value: 0.4158920394678395
|
188 |
+
name: Spearman Cosine
|
189 |
+
- type: pearson_cosine
|
190 |
+
value: 0.33243289478987115
|
191 |
+
name: Pearson Cosine
|
192 |
+
- type: spearman_cosine
|
193 |
+
value: 0.2806845193699054
|
194 |
+
name: Spearman Cosine
|
195 |
+
---
|
196 |
+
|
197 |
+
# SentenceTransformer based on sentence-transformers/distiluse-base-multilingual-cased-v2
|
198 |
+
|
199 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/distiluse-base-multilingual-cased-v2](https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased-v2) on the [wmt_da](https://huggingface.co/datasets/RicardoRei/wmt-da-human-evaluation), [mlqe_en_de](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1), [mlqe_en_zh](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1), [mlqe_et_en](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1), [mlqe_ne_en](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1), [mlqe_ro_en](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1) and [mlqe_si_en](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1) datasets. It maps sentences & paragraphs to a 512-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
200 |
+
|
201 |
+
## Model Details
|
202 |
+
|
203 |
+
### Model Description
|
204 |
+
- **Model Type:** Sentence Transformer
|
205 |
+
- **Base model:** [sentence-transformers/distiluse-base-multilingual-cased-v2](https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased-v2) <!-- at revision dad0fa1ee4fa6e982d3adbce87c73c02e6aee838 -->
|
206 |
+
- **Maximum Sequence Length:** 128 tokens
|
207 |
+
- **Output Dimensionality:** 512 dimensions
|
208 |
+
- **Similarity Function:** Cosine Similarity
|
209 |
+
- **Training Datasets:**
|
210 |
+
- [wmt_da](https://huggingface.co/datasets/RicardoRei/wmt-da-human-evaluation)
|
211 |
+
- [mlqe_en_de](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1)
|
212 |
+
- [mlqe_en_zh](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1)
|
213 |
+
- [mlqe_et_en](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1)
|
214 |
+
- [mlqe_ne_en](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1)
|
215 |
+
- [mlqe_ro_en](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1)
|
216 |
+
- [mlqe_si_en](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1)
|
217 |
+
- **Languages:** bn, cs, de, en, et, fi, fr, gu, ha, hi, is, ja, kk, km, lt, lv, pl, ps, ru, ta, tr, uk, xh, zh, zu, ne, ro, si
|
218 |
+
<!-- - **License:** Unknown -->
|
219 |
+
|
220 |
+
### Model Sources
|
221 |
+
|
222 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
223 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
224 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
225 |
+
|
226 |
+
### Full Model Architecture
|
227 |
+
|
228 |
+
```
|
229 |
+
SentenceTransformer(
|
230 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel
|
231 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
232 |
+
(2): Dense({'in_features': 768, 'out_features': 512, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
|
233 |
+
)
|
234 |
+
```
|
235 |
+
|
236 |
+
## Usage
|
237 |
+
|
238 |
+
### Direct Usage (Sentence Transformers)
|
239 |
+
|
240 |
+
First install the Sentence Transformers library:
|
241 |
+
|
242 |
+
```bash
|
243 |
+
pip install -U sentence-transformers
|
244 |
+
```
|
245 |
+
|
246 |
+
Then you can load this model and run inference.
|
247 |
+
```python
|
248 |
+
from sentence_transformers import SentenceTransformer
|
249 |
+
|
250 |
+
# Download from the 🤗 Hub
|
251 |
+
model = SentenceTransformer("RomainDarous/distiluse-base-multilingual-cased-v2-sts")
|
252 |
+
# Run inference
|
253 |
+
sentences = [
|
254 |
+
'Garnizoana otomană se retrage în sudul Dunării, iar după 164 de ani cetatea intră din nou sub stăpânirea europenilor.',
|
255 |
+
'Ottoman garnisoana is withdrawing into the south of the Danube and, after 164 years, it is once again under the control of Europeans.',
|
256 |
+
'This is because, once again, we have taken into account the fact that we have adopted a large number of legislative proposals.',
|
257 |
+
]
|
258 |
+
embeddings = model.encode(sentences)
|
259 |
+
print(embeddings.shape)
|
260 |
+
# [3, 512]
|
261 |
+
|
262 |
+
# Get the similarity scores for the embeddings
|
263 |
+
similarities = model.similarity(embeddings, embeddings)
|
264 |
+
print(similarities.shape)
|
265 |
+
# [3, 3]
|
266 |
+
```
|
267 |
+
|
268 |
+
<!--
|
269 |
+
### Direct Usage (Transformers)
|
270 |
+
|
271 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
272 |
+
|
273 |
+
</details>
|
274 |
+
-->
|
275 |
+
|
276 |
+
<!--
|
277 |
+
### Downstream Usage (Sentence Transformers)
|
278 |
+
|
279 |
+
You can finetune this model on your own dataset.
|
280 |
+
|
281 |
+
<details><summary>Click to expand</summary>
|
282 |
+
|
283 |
+
</details>
|
284 |
+
-->
|
285 |
+
|
286 |
+
<!--
|
287 |
+
### Out-of-Scope Use
|
288 |
+
|
289 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
290 |
+
-->
|
291 |
+
|
292 |
+
## Evaluation
|
293 |
+
|
294 |
+
### Metrics
|
295 |
+
|
296 |
+
#### Semantic Similarity
|
297 |
+
|
298 |
+
* Datasets: `sts-eval`, `sts-test`, `sts-test`, `sts-test`, `sts-test`, `sts-test`, `sts-test` and `sts-test`
|
299 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
300 |
+
|
301 |
+
| Metric | sts-eval | sts-test |
|
302 |
+
|:--------------------|:-----------|:-----------|
|
303 |
+
| pearson_cosine | 0.4242 | 0.3324 |
|
304 |
+
| **spearman_cosine** | **0.4175** | **0.2807** |
|
305 |
+
|
306 |
+
#### Semantic Similarity
|
307 |
+
|
308 |
+
* Dataset: `sts-eval`
|
309 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
310 |
+
|
311 |
+
| Metric | Value |
|
312 |
+
|:--------------------|:-----------|
|
313 |
+
| pearson_cosine | 0.0773 |
|
314 |
+
| **spearman_cosine** | **0.1305** |
|
315 |
+
|
316 |
+
#### Semantic Similarity
|
317 |
+
|
318 |
+
* Dataset: `sts-eval`
|
319 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
320 |
+
|
321 |
+
| Metric | Value |
|
322 |
+
|:--------------------|:-----------|
|
323 |
+
| pearson_cosine | 0.1673 |
|
324 |
+
| **spearman_cosine** | **0.1837** |
|
325 |
+
|
326 |
+
#### Semantic Similarity
|
327 |
+
|
328 |
+
* Dataset: `sts-eval`
|
329 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
330 |
+
|
331 |
+
| Metric | Value |
|
332 |
+
|:--------------------|:-----------|
|
333 |
+
| pearson_cosine | 0.3567 |
|
334 |
+
| **spearman_cosine** | **0.3657** |
|
335 |
+
|
336 |
+
#### Semantic Similarity
|
337 |
+
|
338 |
+
* Dataset: `sts-eval`
|
339 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
340 |
+
|
341 |
+
| Metric | Value |
|
342 |
+
|:--------------------|:-----------|
|
343 |
+
| pearson_cosine | 0.4127 |
|
344 |
+
| **spearman_cosine** | **0.4104** |
|
345 |
+
|
346 |
+
#### Semantic Similarity
|
347 |
+
|
348 |
+
* Dataset: `sts-eval`
|
349 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
350 |
+
|
351 |
+
| Metric | Value |
|
352 |
+
|:--------------------|:-----------|
|
353 |
+
| pearson_cosine | 0.5255 |
|
354 |
+
| **spearman_cosine** | **0.4786** |
|
355 |
+
|
356 |
+
#### Semantic Similarity
|
357 |
+
|
358 |
+
* Dataset: `sts-eval`
|
359 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
360 |
+
|
361 |
+
| Metric | Value |
|
362 |
+
|:--------------------|:-----------|
|
363 |
+
| pearson_cosine | 0.3119 |
|
364 |
+
| **spearman_cosine** | **0.2814** |
|
365 |
+
|
366 |
+
<!--
|
367 |
+
## Bias, Risks and Limitations
|
368 |
+
|
369 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
370 |
+
-->
|
371 |
+
|
372 |
+
<!--
|
373 |
+
### Recommendations
|
374 |
+
|
375 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
376 |
+
-->
|
377 |
+
|
378 |
+
## Training Details
|
379 |
+
|
380 |
+
### Training Datasets
|
381 |
+
|
382 |
+
#### wmt_da
|
383 |
+
|
384 |
+
* Dataset: [wmt_da](https://huggingface.co/datasets/RicardoRei/wmt-da-human-evaluation) at [301de38](https://huggingface.co/datasets/RicardoRei/wmt-da-human-evaluation/tree/301de385bf05b0c00a8f4be74965e186164dd425)
|
385 |
+
* Size: 1,285,190 training samples
|
386 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
387 |
+
* Approximate statistics based on the first 1000 samples:
|
388 |
+
| | sentence1 | sentence2 | score |
|
389 |
+
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:--------------------------------------------------------------|
|
390 |
+
| type | string | string | float |
|
391 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 37.09 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 37.12 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.7</li><li>max: 1.0</li></ul> |
|
392 |
+
* Samples:
|
393 |
+
| sentence1 | sentence2 | score |
|
394 |
+
|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------|
|
395 |
+
| <code>Z dat ÚZIS také vyplývá, že se zastavil úbytek zdravotních sester v nemocnicích.</code> | <code>The data from the IHIS also shows that the decline of nurses in hospitals has stopped.</code> | <code>0.47</code> |
|
396 |
+
| <code>Я был самым гордым, самым пьяным девственником, которого кто-либо когда-либо видел.</code> | <code>I was the proudest, most drunk virgin anyone had ever seen.</code> | <code>0.99</code> |
|
397 |
+
| <code>Das Trampolinspringen hat einen gewissen Außenseitercharme, teilweise weil es für das unaufgeklärte Ohr passender für eine Clownsschule als die für die Olympischen Spiele klingt.</code> | <code>The trampoline jumping has some outsider charm, in part because it sounds more appropriate for the unenlightened ear for a clowns school than the one for the Olympics.</code> | <code>0.81</code> |
|
398 |
+
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
399 |
+
```json
|
400 |
+
{
|
401 |
+
"scale": 20.0,
|
402 |
+
"similarity_fct": "pairwise_cos_sim"
|
403 |
+
}
|
404 |
+
```
|
405 |
+
|
406 |
+
#### mlqe_en_de
|
407 |
+
|
408 |
+
* Dataset: [mlqe_en_de](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1) at [0783ed2](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1/tree/0783ed2bd75f44835df4ea664f9ccb85812c8563)
|
409 |
+
* Size: 7,000 training samples
|
410 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
411 |
+
* Approximate statistics based on the first 1000 samples:
|
412 |
+
| | sentence1 | sentence2 | score |
|
413 |
+
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------|
|
414 |
+
| type | string | string | float |
|
415 |
+
| details | <ul><li>min: 11 tokens</li><li>mean: 23.78 tokens</li><li>max: 44 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 26.51 tokens</li><li>max: 54 tokens</li></ul> | <ul><li>min: 0.06</li><li>mean: 0.86</li><li>max: 1.0</li></ul> |
|
416 |
+
* Samples:
|
417 |
+
| sentence1 | sentence2 | score |
|
418 |
+
|:-------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------|
|
419 |
+
| <code>Early Muslim traders and merchants visited Bengal while traversing the Silk Road in the first millennium.</code> | <code>Frühe muslimische Händler und Kaufleute besuchten Bengalen, während sie im ersten Jahrtausend die Seidenstraße durchquerten.</code> | <code>0.9233333468437195</code> |
|
420 |
+
| <code>While Fran dissipated shortly after that, the tropical wave progressed into the northeastern Pacific Ocean.</code> | <code>Während Fran kurz danach zerstreute, entwickelte sich die tropische Welle in den nordöstlichen Pazifischen Ozean.</code> | <code>0.8899999856948853</code> |
|
421 |
+
| <code>Distressed securities include such events as restructurings, recapitalizations, and bankruptcies.</code> | <code>Zu den belasteten Wertpapieren gehören Restrukturierungen, Rekapitalisierungen und Insolvenzen.</code> | <code>0.9300000071525574</code> |
|
422 |
+
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
423 |
+
```json
|
424 |
+
{
|
425 |
+
"scale": 20.0,
|
426 |
+
"similarity_fct": "pairwise_cos_sim"
|
427 |
+
}
|
428 |
+
```
|
429 |
+
|
430 |
+
#### mlqe_en_zh
|
431 |
+
|
432 |
+
* Dataset: [mlqe_en_zh](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1) at [0783ed2](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1/tree/0783ed2bd75f44835df4ea664f9ccb85812c8563)
|
433 |
+
* Size: 7,000 training samples
|
434 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
435 |
+
* Approximate statistics based on the first 1000 samples:
|
436 |
+
| | sentence1 | sentence2 | score |
|
437 |
+
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------|
|
438 |
+
| type | string | string | float |
|
439 |
+
| details | <ul><li>min: 9 tokens</li><li>mean: 24.09 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 12 tokens</li><li>mean: 29.93 tokens</li><li>max: 74 tokens</li></ul> | <ul><li>min: 0.01</li><li>mean: 0.68</li><li>max: 0.98</li></ul> |
|
440 |
+
* Samples:
|
441 |
+
| sentence1 | sentence2 | score |
|
442 |
+
|:-------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------|:---------------------------------|
|
443 |
+
| <code>In the late 1980s, the hotel's reputation declined, and it functioned partly as a "backpackers hangout."</code> | <code>在 20 世纪 80 年代末 , 这家旅馆的声誉下降了 , 部分地起到了 "背包吊销" 的作用。</code> | <code>0.40666666626930237</code> |
|
444 |
+
| <code>From 1870 to 1915, 36 million Europeans migrated away from Europe.</code> | <code>从 1870 年到 1915 年 , 3, 600 万欧洲人从欧洲移民。</code> | <code>0.8333333730697632</code> |
|
445 |
+
| <code>In some photos, the footpads did press into the regolith, especially when they moved sideways at touchdown.</code> | <code>在一些照片中 , 脚垫确实挤进了后台 , 尤其是当他们在触地时侧面移动时。</code> | <code>0.33000001311302185</code> |
|
446 |
+
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
447 |
+
```json
|
448 |
+
{
|
449 |
+
"scale": 20.0,
|
450 |
+
"similarity_fct": "pairwise_cos_sim"
|
451 |
+
}
|
452 |
+
```
|
453 |
+
|
454 |
+
#### mlqe_et_en
|
455 |
+
|
456 |
+
* Dataset: [mlqe_et_en](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1) at [0783ed2](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1/tree/0783ed2bd75f44835df4ea664f9ccb85812c8563)
|
457 |
+
* Size: 7,000 training samples
|
458 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
459 |
+
* Approximate statistics based on the first 1000 samples:
|
460 |
+
| | sentence1 | sentence2 | score |
|
461 |
+
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------|
|
462 |
+
| type | string | string | float |
|
463 |
+
| details | <ul><li>min: 14 tokens</li><li>mean: 31.88 tokens</li><li>max: 63 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 24.57 tokens</li><li>max: 56 tokens</li></ul> | <ul><li>min: 0.03</li><li>mean: 0.67</li><li>max: 1.0</li></ul> |
|
464 |
+
* Samples:
|
465 |
+
| sentence1 | sentence2 | score |
|
466 |
+
|:----------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------|
|
467 |
+
| <code>Gruusias vahistati president Mihhail Saakašvili pressibüroo nõunik Simon Kiladze, keda süüdistati spioneerimises.</code> | <code>In Georgia, an adviser to the press office of President Mikhail Saakashvili, Simon Kiladze, was arrested and accused of spying.</code> | <code>0.9466666579246521</code> |
|
468 |
+
| <code>Nii teadmissotsioloogia pooldajad tavaliselt Kuhni tõlgendavadki, arendades tema vaated sõnaselgeks relativismiks.</code> | <code>This is how supporters of knowledge sociology usually interpret Kuhn by developing his views into an explicit relativism.</code> | <code>0.9366666674613953</code> |
|
469 |
+
| <code>18. jaanuaril 2003 haarasid mitmeid Canberra eeslinnu võsapõlengud, milles hukkus neli ja sai vigastada 435 inimest.</code> | <code>On 18 January 2003, several of the suburbs of Canberra were seized by debt fires which killed four people and injured 435 people.</code> | <code>0.8666666150093079</code> |
|
470 |
+
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
471 |
+
```json
|
472 |
+
{
|
473 |
+
"scale": 20.0,
|
474 |
+
"similarity_fct": "pairwise_cos_sim"
|
475 |
+
}
|
476 |
+
```
|
477 |
+
|
478 |
+
#### mlqe_ne_en
|
479 |
+
|
480 |
+
* Dataset: [mlqe_ne_en](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1) at [0783ed2](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1/tree/0783ed2bd75f44835df4ea664f9ccb85812c8563)
|
481 |
+
* Size: 7,000 training samples
|
482 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
483 |
+
* Approximate statistics based on the first 1000 samples:
|
484 |
+
| | sentence1 | sentence2 | score |
|
485 |
+
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------|
|
486 |
+
| type | string | string | float |
|
487 |
+
| details | <ul><li>min: 17 tokens</li><li>mean: 40.67 tokens</li><li>max: 77 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 24.66 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 0.01</li><li>mean: 0.39</li><li>max: 1.0</li></ul> |
|
488 |
+
* Samples:
|
489 |
+
| sentence1 | sentence2 | score |
|
490 |
+
|:------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------|:---------------------------------|
|
491 |
+
| <code>सामान्य बजट प्रायः फेब्रुअरीका अंतिम कार्य दिवसमा लाईन्छ।</code> | <code>A normal budget is usually awarded to the digital working day of February.</code> | <code>0.5600000023841858</code> |
|
492 |
+
| <code>कविताका यस्ता स्वरूपमा दुई, तिन वा चार पाउसम्मका मुक्तक, हाइकु, सायरी र लोकसूक्तिहरू पर्दछन् ।</code> | <code>The book consists of two, free of her or four paulets, haiku, Sairi, and locus in such forms.</code> | <code>0.23666666448116302</code> |
|
493 |
+
| <code>ब्रिट्नीले यस बारेमा प्रतिक्रिया ब्यक्ता गरदै भनिन,"कुन ठूलो कुरा ���ो र?</code> | <code>Britney did not respond to this, saying "which is a big thing and a big thing?</code> | <code>0.21666665375232697</code> |
|
494 |
+
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
495 |
+
```json
|
496 |
+
{
|
497 |
+
"scale": 20.0,
|
498 |
+
"similarity_fct": "pairwise_cos_sim"
|
499 |
+
}
|
500 |
+
```
|
501 |
+
|
502 |
+
#### mlqe_ro_en
|
503 |
+
|
504 |
+
* Dataset: [mlqe_ro_en](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1) at [0783ed2](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1/tree/0783ed2bd75f44835df4ea664f9ccb85812c8563)
|
505 |
+
* Size: 7,000 training samples
|
506 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
507 |
+
* Approximate statistics based on the first 1000 samples:
|
508 |
+
| | sentence1 | sentence2 | score |
|
509 |
+
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------|
|
510 |
+
| type | string | string | float |
|
511 |
+
| details | <ul><li>min: 12 tokens</li><li>mean: 29.44 tokens</li><li>max: 60 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 22.38 tokens</li><li>max: 65 tokens</li></ul> | <ul><li>min: 0.01</li><li>mean: 0.68</li><li>max: 1.0</li></ul> |
|
512 |
+
* Samples:
|
513 |
+
| sentence1 | sentence2 | score |
|
514 |
+
|:---------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------|
|
515 |
+
| <code>Orașul va fi împărțit în patru districte, iar suburbiile în 10 mahalale.</code> | <code>The city will be divided into four districts and suburbs into 10 mahalals.</code> | <code>0.4699999988079071</code> |
|
516 |
+
| <code>La scurt timp după aceasta, au devenit cunoscute debarcările germane de la Trondheim, Bergen și Stavanger, precum și luptele din Oslofjord.</code> | <code>In the light of the above, the Authority concludes that the aid granted to ADIF is compatible with the internal market pursuant to Article 61 (3) (c) of the EEA Agreement.</code> | <code>0.02666666731238365</code> |
|
517 |
+
| <code>Până în vara 1791, în Clubul iacobinilor au dominat reprezentanții monarhismului liberal constituțional.</code> | <code>Until the summer of 1791, representatives of liberal constitutional monarchism dominated in the Jacobins Club.</code> | <code>0.8733333349227905</code> |
|
518 |
+
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
519 |
+
```json
|
520 |
+
{
|
521 |
+
"scale": 20.0,
|
522 |
+
"similarity_fct": "pairwise_cos_sim"
|
523 |
+
}
|
524 |
+
```
|
525 |
+
|
526 |
+
#### mlqe_si_en
|
527 |
+
|
528 |
+
* Dataset: [mlqe_si_en](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1) at [0783ed2](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1/tree/0783ed2bd75f44835df4ea664f9ccb85812c8563)
|
529 |
+
* Size: 7,000 training samples
|
530 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
531 |
+
* Approximate statistics based on the first 1000 samples:
|
532 |
+
| | sentence1 | sentence2 | score |
|
533 |
+
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------|
|
534 |
+
| type | string | string | float |
|
535 |
+
| details | <ul><li>min: 8 tokens</li><li>mean: 18.19 tokens</li><li>max: 38 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 22.31 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 0.01</li><li>mean: 0.51</li><li>max: 1.0</li></ul> |
|
536 |
+
* Samples:
|
537 |
+
| sentence1 | sentence2 | score |
|
538 |
+
|:----------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------|
|
539 |
+
| <code>ඇපලෝ 4 සැටර්න් V බූස්ටරයේ ප්රථම පර්යේෂණ පියාසැරිය විය.</code> | <code>The first research flight of the Apollo 4 Saturn V Booster.</code> | <code>0.7966666221618652</code> |
|
540 |
+
| <code>මෙහි අවපාතය සැලකීමේ දී, මෙහි 48%ක අවරෝහණය $ මිලියන 125කට අධික චිත්රපටයක් ලද තෙවන කුඩාම අවපාතය වේ.</code> | <code>In conjunction with the depression here, 48 % of obesity here is the third smallest depression in over $ 125 million film.</code> | <code>0.17666666209697723</code> |
|
541 |
+
| <code>එසේම "බකමූණන් මගින් මෙම රාක්ෂසියගේ රාත්රී හැසිරීම සංකේතවත් වන බව" පවසයි.</code> | <code>Also "the owl says that this monster's night behavior is symbolic".</code> | <code>0.8799999952316284</code> |
|
542 |
+
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
543 |
+
```json
|
544 |
+
{
|
545 |
+
"scale": 20.0,
|
546 |
+
"similarity_fct": "pairwise_cos_sim"
|
547 |
+
}
|
548 |
+
```
|
549 |
+
|
550 |
+
### Evaluation Datasets
|
551 |
+
|
552 |
+
#### wmt_da
|
553 |
+
|
554 |
+
* Dataset: [wmt_da](https://huggingface.co/datasets/RicardoRei/wmt-da-human-evaluation) at [301de38](https://huggingface.co/datasets/RicardoRei/wmt-da-human-evaluation/tree/301de385bf05b0c00a8f4be74965e186164dd425)
|
555 |
+
* Size: 1,285,190 evaluation samples
|
556 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
557 |
+
* Approximate statistics based on the first 1000 samples:
|
558 |
+
| | sentence1 | sentence2 | score |
|
559 |
+
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:--------------------------------------------------------------|
|
560 |
+
| type | string | string | float |
|
561 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 36.52 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 36.59 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.7</li><li>max: 1.0</li></ul> |
|
562 |
+
* Samples:
|
563 |
+
| sentence1 | sentence2 | score |
|
564 |
+
|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------|
|
565 |
+
| <code>The note adds that should the departure from the White House be delayed, a second aircrew would be needed for the return flight due to duty-hour restrictions.</code> | <code>V poznámce se dodává, že pokud by se odlet z Bílého domu zpozdil, byla by pro zpáteční let kvůli omezení pracovní doby nutná druhá letecká posádka.</code> | <code>0.95</code> |
|
566 |
+
| <code>上半年电信网络诈骗犯罪上升七成 最高检���结特点-中新网</code> | <code>In the first half of the year, telecommunication network fraud crimes rose by 70%. The highest inspection summary characteristics-Zhongxin.com</code> | <code>0.72</code> |
|
567 |
+
| <code>Als zentrale Herausforderungen für den Bundesnachrichtendienst (BND) nannte Merkel den Kampf gegen die Verbreitung von Falschmeldungen im Internet und die Abwehr von Cyberattacken.</code> | <code>Merkel a cité la lutte contre la propagation de fausses nouvelles en ligne et la défense contre les cyberattaques comme des défis majeurs pour le service fédéral de renseignement (BND).</code> | <code>0.87</code> |
|
568 |
+
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
569 |
+
```json
|
570 |
+
{
|
571 |
+
"scale": 20.0,
|
572 |
+
"similarity_fct": "pairwise_cos_sim"
|
573 |
+
}
|
574 |
+
```
|
575 |
+
|
576 |
+
#### mlqe_en_de
|
577 |
+
|
578 |
+
* Dataset: [mlqe_en_de](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1) at [0783ed2](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1/tree/0783ed2bd75f44835df4ea664f9ccb85812c8563)
|
579 |
+
* Size: 1,000 evaluation samples
|
580 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
581 |
+
* Approximate statistics based on the first 1000 samples:
|
582 |
+
| | sentence1 | sentence2 | score |
|
583 |
+
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------|
|
584 |
+
| type | string | string | float |
|
585 |
+
| details | <ul><li>min: 11 tokens</li><li>mean: 24.11 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 26.66 tokens</li><li>max: 55 tokens</li></ul> | <ul><li>min: 0.03</li><li>mean: 0.81</li><li>max: 1.0</li></ul> |
|
586 |
+
* Samples:
|
587 |
+
| sentence1 | sentence2 | score |
|
588 |
+
|:----------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------|
|
589 |
+
| <code>Resuming her patrols, Constitution managed to recapture the American sloop Neutrality on 27 March and, a few days later, the French ship Carteret.</code> | <code>Mit der Wiederaufnahme ihrer Patrouillen gelang es der Verfassung, am 27. März die amerikanische Schleuderneutralität und wenige Tage später das französische Schiff Carteret zurückzuerobern.</code> | <code>0.9033333659172058</code> |
|
590 |
+
| <code>Blaine's nomination alienated many Republicans who viewed Blaine as ambitious and immoral.</code> | <code>Blaines Nominierung entfremdete viele Republikaner, die Blaine als ehrgeizig und unmoralisch betrachteten.</code> | <code>0.9216666221618652</code> |
|
591 |
+
| <code>This initiated a brief correspondence between the two which quickly descended into political rancor.</code> | <code>Dies leitete eine kurze Korrespondenz zwischen den beiden ein, die schnell zu politischem Groll abstieg.</code> | <code>0.878333330154419</code> |
|
592 |
+
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
593 |
+
```json
|
594 |
+
{
|
595 |
+
"scale": 20.0,
|
596 |
+
"similarity_fct": "pairwise_cos_sim"
|
597 |
+
}
|
598 |
+
```
|
599 |
+
|
600 |
+
#### mlqe_en_zh
|
601 |
+
|
602 |
+
* Dataset: [mlqe_en_zh](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1) at [0783ed2](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1/tree/0783ed2bd75f44835df4ea664f9ccb85812c8563)
|
603 |
+
* Size: 1,000 evaluation samples
|
604 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
605 |
+
* Approximate statistics based on the first 1000 samples:
|
606 |
+
| | sentence1 | sentence2 | score |
|
607 |
+
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------|
|
608 |
+
| type | string | string | float |
|
609 |
+
| details | <ul><li>min: 9 tokens</li><li>mean: 23.75 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 29.56 tokens</li><li>max: 67 tokens</li></ul> | <ul><li>min: 0.26</li><li>mean: 0.65</li><li>max: 0.9</li></ul> |
|
610 |
+
* Samples:
|
611 |
+
| sentence1 | sentence2 | score |
|
612 |
+
|:---------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------|:--------------------------------|
|
613 |
+
| <code>Freeman briefly stayed with the king before returning to Accra via Whydah, Ahgwey and Little Popo.</code> | <code>弗里曼在经过惠达、阿格威和小波波回到阿克拉之前与国王一起住了一会儿。</code> | <code>0.6683333516120911</code> |
|
614 |
+
| <code>Fantastic Fiction "Scratches in the Sky, Ben Peek, Agog!</code> | <code>奇特的虚构 "天空中的碎片 , 本佩克 , 阿戈 !</code> | <code>0.71833336353302</code> |
|
615 |
+
| <code>For Hermann Keller, the running quavers and semiquavers "suffuse the setting with health and strength."</code> | <code>对赫尔曼 · 凯勒来说 , 跑步的跳跃者和半跳跃者 "让环境充满健康和力量" 。</code> | <code>0.7066666483879089</code> |
|
616 |
+
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
617 |
+
```json
|
618 |
+
{
|
619 |
+
"scale": 20.0,
|
620 |
+
"similarity_fct": "pairwise_cos_sim"
|
621 |
+
}
|
622 |
+
```
|
623 |
+
|
624 |
+
#### mlqe_et_en
|
625 |
+
|
626 |
+
* Dataset: [mlqe_et_en](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1) at [0783ed2](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1/tree/0783ed2bd75f44835df4ea664f9ccb85812c8563)
|
627 |
+
* Size: 1,000 evaluation samples
|
628 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
629 |
+
* Approximate statistics based on the first 1000 samples:
|
630 |
+
| | sentence1 | sentence2 | score |
|
631 |
+
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------|
|
632 |
+
| type | string | string | float |
|
633 |
+
| details | <ul><li>min: 12 tokens</li><li>mean: 32.4 tokens</li><li>max: 58 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 24.87 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 0.03</li><li>mean: 0.6</li><li>max: 0.99</li></ul> |
|
634 |
+
* Samples:
|
635 |
+
| sentence1 | sentence2 | score |
|
636 |
+
|:----------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------|:---------------------------------|
|
637 |
+
| <code>Jackson pidas seal kõne, öeldes, et James Brown on tema suurim inspiratsioon.</code> | <code>Jackson gave a speech there saying that James Brown is his greatest inspiration.</code> | <code>0.9833333492279053</code> |
|
638 |
+
| <code>Kaanelugu rääkis loo kolme ungarlase üleelamistest Ungari revolutsiooni päevil.</code> | <code>The life of the Man spoke of a story of three Hungarians living in the days of the Hungarian Revolution.</code> | <code>0.28999999165534973</code> |
|
639 |
+
| <code>Teise maailmasõja ajal oli ta mitme Saksa juhatusele alluvate eesti väeosa ülem.</code> | <code>During World War II, he was the commander of several of the German leadership.</code> | <code>0.4516666829586029</code> |
|
640 |
+
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
641 |
+
```json
|
642 |
+
{
|
643 |
+
"scale": 20.0,
|
644 |
+
"similarity_fct": "pairwise_cos_sim"
|
645 |
+
}
|
646 |
+
```
|
647 |
+
|
648 |
+
#### mlqe_ne_en
|
649 |
+
|
650 |
+
* Dataset: [mlqe_ne_en](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1) at [0783ed2](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1/tree/0783ed2bd75f44835df4ea664f9ccb85812c8563)
|
651 |
+
* Size: 1,000 evaluation samples
|
652 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
653 |
+
* Approximate statistics based on the first 1000 samples:
|
654 |
+
| | sentence1 | sentence2 | score |
|
655 |
+
|:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:-----------------------------------------------------------------|
|
656 |
+
| type | string | string | float |
|
657 |
+
| details | <ul><li>min: 17 tokens</li><li>mean: 41.03 tokens</li><li>max: 85 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 24.77 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 0.05</li><li>mean: 0.36</li><li>max: 0.92</li></ul> |
|
658 |
+
* Samples:
|
659 |
+
| sentence1 | sentence2 | score |
|
660 |
+
|:------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------|:---------------------------------|
|
661 |
+
| <code>१८९२ तिर भवानीदत्त पाण्डेले 'मुद्रा राक्षस'को अनुवाद गरे।</code> | <code>Around 1892, Bhavani Pandit translated the 'money monster'.</code> | <code>0.8416666388511658</code> |
|
662 |
+
| <code>यस बच्चाको मुखले आमाको स्तन यस बच्चाको मुखले आमाको स्तन राम्ररी च्यापेको छ ।</code> | <code>The breasts of this child's mouth are taped well with the mother's mouth.</code> | <code>0.2150000035762787</code> |
|
663 |
+
| <code>बुवाको बन्दुक चोरेर हिँडेका बराललाई केआई सिंहले अब गोली ल्याउन लगाए ।...</code> | <code>Kei Singh, who stole the boy's closet, took the bullet to bring it now..</code> | <code>0.27000001072883606</code> |
|
664 |
+
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
665 |
+
```json
|
666 |
+
{
|
667 |
+
"scale": 20.0,
|
668 |
+
"similarity_fct": "pairwise_cos_sim"
|
669 |
+
}
|
670 |
+
```
|
671 |
+
|
672 |
+
#### mlqe_ro_en
|
673 |
+
|
674 |
+
* Dataset: [mlqe_ro_en](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1) at [0783ed2](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1/tree/0783ed2bd75f44835df4ea664f9ccb85812c8563)
|
675 |
+
* Size: 1,000 evaluation samples
|
676 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
677 |
+
* Approximate statistics based on the first 1000 samples:
|
678 |
+
| | sentence1 | sentence2 | score |
|
679 |
+
|:--------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------|
|
680 |
+
| type | string | string | float |
|
681 |
+
| details | <ul><li>min: 14 tokens</li><li>mean: 30.25 tokens</li><li>max: 59 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 22.7 tokens</li><li>max: 55 tokens</li></ul> | <ul><li>min: 0.01</li><li>mean: 0.68</li><li>max: 1.0</li></ul> |
|
682 |
+
* Samples:
|
683 |
+
| sentence1 | sentence2 | score |
|
684 |
+
|:----------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------|
|
685 |
+
| <code>Cornwallis se afla înconjurat pe uscat de forțe armate net superioare și retragerea pe mare era îndoielnică din cauza flotei franceze.</code> | <code>Cornwallis was surrounded by shore by higher armed forces and the sea withdrawal was doubtful due to the French fleet.</code> | <code>0.8199999928474426</code> |
|
686 |
+
| <code>thumbrightuprightDansatori [[cretani de muzică tradițională.</code> | <code>Number of employees employed in the production of the like product in the Union.</code> | <code>0.009999999776482582</code> |
|
687 |
+
| <code>Potrivit documentelor vremii și tradiției orale, aceasta a fost cea mai grea perioadă din istoria orașului.</code> | <code>According to the documents of the oral weather and tradition, this was the hardest period in the city's history.</code> | <code>0.5383332967758179</code> |
|
688 |
+
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
689 |
+
```json
|
690 |
+
{
|
691 |
+
"scale": 20.0,
|
692 |
+
"similarity_fct": "pairwise_cos_sim"
|
693 |
+
}
|
694 |
+
```
|
695 |
+
|
696 |
+
#### mlqe_si_en
|
697 |
+
|
698 |
+
* Dataset: [mlqe_si_en](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1) at [0783ed2](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1/tree/0783ed2bd75f44835df4ea664f9ccb85812c8563)
|
699 |
+
* Size: 1,000 evaluation samples
|
700 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
701 |
+
* Approximate statistics based on the first 1000 samples:
|
702 |
+
| | sentence1 | sentence2 | score |
|
703 |
+
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------|
|
704 |
+
| type | string | string | float |
|
705 |
+
| details | <ul><li>min: 8 tokens</li><li>mean: 18.12 tokens</li><li>max: 36 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 22.18 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 0.03</li><li>mean: 0.51</li><li>max: 0.99</li></ul> |
|
706 |
+
* Samples:
|
707 |
+
| sentence1 | sentence2 | score |
|
708 |
+
|:----------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------|:--------------------------------|
|
709 |
+
| <code>එයට ශි්ර ලංකාවේ සාමය ඇති කිරිමටත් නැති කිරිමටත් පුළුවන්.</code> | <code>It can also cause peace in Sri Lanka.</code> | <code>0.3199999928474426</code> |
|
710 |
+
| <code>ඔහු මනෝ විද්යාව, සමාජ විද්යාව, ඉතිහාසය හා සන්නිවේදනය යන විෂය ක්ෂේත්රයන් පිලිබදවද අධ්යයනයන් සිදු කිරීමට උත්සාහ කරන ලදි.</code> | <code>He attempted to do subjects in psychology, sociology, history and communication.</code> | <code>0.5366666913032532</code> |
|
711 |
+
| <code>එහෙත් කිසිදු මිනිසෙක් හෝ ගැහැනියෙක් එලිමහනක නොවූහ.</code> | <code>But no man or woman was eliminated.</code> | <code>0.2783333361148834</code> |
|
712 |
+
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
713 |
+
```json
|
714 |
+
{
|
715 |
+
"scale": 20.0,
|
716 |
+
"similarity_fct": "pairwise_cos_sim"
|
717 |
+
}
|
718 |
+
```
|
719 |
+
|
720 |
+
### Training Hyperparameters
|
721 |
+
#### Non-Default Hyperparameters
|
722 |
+
|
723 |
+
- `eval_strategy`: steps
|
724 |
+
- `per_device_train_batch_size`: 64
|
725 |
+
- `per_device_eval_batch_size`: 64
|
726 |
+
- `num_train_epochs`: 2
|
727 |
+
- `warmup_ratio`: 0.1
|
728 |
+
|
729 |
+
#### All Hyperparameters
|
730 |
+
<details><summary>Click to expand</summary>
|
731 |
+
|
732 |
+
- `overwrite_output_dir`: False
|
733 |
+
- `do_predict`: False
|
734 |
+
- `eval_strategy`: steps
|
735 |
+
- `prediction_loss_only`: True
|
736 |
+
- `per_device_train_batch_size`: 64
|
737 |
+
- `per_device_eval_batch_size`: 64
|
738 |
+
- `per_gpu_train_batch_size`: None
|
739 |
+
- `per_gpu_eval_batch_size`: None
|
740 |
+
- `gradient_accumulation_steps`: 1
|
741 |
+
- `eval_accumulation_steps`: None
|
742 |
+
- `torch_empty_cache_steps`: None
|
743 |
+
- `learning_rate`: 5e-05
|
744 |
+
- `weight_decay`: 0.0
|
745 |
+
- `adam_beta1`: 0.9
|
746 |
+
- `adam_beta2`: 0.999
|
747 |
+
- `adam_epsilon`: 1e-08
|
748 |
+
- `max_grad_norm`: 1.0
|
749 |
+
- `num_train_epochs`: 2
|
750 |
+
- `max_steps`: -1
|
751 |
+
- `lr_scheduler_type`: linear
|
752 |
+
- `lr_scheduler_kwargs`: {}
|
753 |
+
- `warmup_ratio`: 0.1
|
754 |
+
- `warmup_steps`: 0
|
755 |
+
- `log_level`: passive
|
756 |
+
- `log_level_replica`: warning
|
757 |
+
- `log_on_each_node`: True
|
758 |
+
- `logging_nan_inf_filter`: True
|
759 |
+
- `save_safetensors`: True
|
760 |
+
- `save_on_each_node`: False
|
761 |
+
- `save_only_model`: False
|
762 |
+
- `restore_callback_states_from_checkpoint`: False
|
763 |
+
- `no_cuda`: False
|
764 |
+
- `use_cpu`: False
|
765 |
+
- `use_mps_device`: False
|
766 |
+
- `seed`: 42
|
767 |
+
- `data_seed`: None
|
768 |
+
- `jit_mode_eval`: False
|
769 |
+
- `use_ipex`: False
|
770 |
+
- `bf16`: False
|
771 |
+
- `fp16`: False
|
772 |
+
- `fp16_opt_level`: O1
|
773 |
+
- `half_precision_backend`: auto
|
774 |
+
- `bf16_full_eval`: False
|
775 |
+
- `fp16_full_eval`: False
|
776 |
+
- `tf32`: None
|
777 |
+
- `local_rank`: 0
|
778 |
+
- `ddp_backend`: None
|
779 |
+
- `tpu_num_cores`: None
|
780 |
+
- `tpu_metrics_debug`: False
|
781 |
+
- `debug`: []
|
782 |
+
- `dataloader_drop_last`: False
|
783 |
+
- `dataloader_num_workers`: 0
|
784 |
+
- `dataloader_prefetch_factor`: None
|
785 |
+
- `past_index`: -1
|
786 |
+
- `disable_tqdm`: False
|
787 |
+
- `remove_unused_columns`: True
|
788 |
+
- `label_names`: None
|
789 |
+
- `load_best_model_at_end`: False
|
790 |
+
- `ignore_data_skip`: False
|
791 |
+
- `fsdp`: []
|
792 |
+
- `fsdp_min_num_params`: 0
|
793 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
794 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
795 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
796 |
+
- `deepspeed`: None
|
797 |
+
- `label_smoothing_factor`: 0.0
|
798 |
+
- `optim`: adamw_torch
|
799 |
+
- `optim_args`: None
|
800 |
+
- `adafactor`: False
|
801 |
+
- `group_by_length`: False
|
802 |
+
- `length_column_name`: length
|
803 |
+
- `ddp_find_unused_parameters`: None
|
804 |
+
- `ddp_bucket_cap_mb`: None
|
805 |
+
- `ddp_broadcast_buffers`: False
|
806 |
+
- `dataloader_pin_memory`: True
|
807 |
+
- `dataloader_persistent_workers`: False
|
808 |
+
- `skip_memory_metrics`: True
|
809 |
+
- `use_legacy_prediction_loop`: False
|
810 |
+
- `push_to_hub`: False
|
811 |
+
- `resume_from_checkpoint`: None
|
812 |
+
- `hub_model_id`: None
|
813 |
+
- `hub_strategy`: every_save
|
814 |
+
- `hub_private_repo`: None
|
815 |
+
- `hub_always_push`: False
|
816 |
+
- `gradient_checkpointing`: False
|
817 |
+
- `gradient_checkpointing_kwargs`: None
|
818 |
+
- `include_inputs_for_metrics`: False
|
819 |
+
- `include_for_metrics`: []
|
820 |
+
- `eval_do_concat_batches`: True
|
821 |
+
- `fp16_backend`: auto
|
822 |
+
- `push_to_hub_model_id`: None
|
823 |
+
- `push_to_hub_organization`: None
|
824 |
+
- `mp_parameters`:
|
825 |
+
- `auto_find_batch_size`: False
|
826 |
+
- `full_determinism`: False
|
827 |
+
- `torchdynamo`: None
|
828 |
+
- `ray_scope`: last
|
829 |
+
- `ddp_timeout`: 1800
|
830 |
+
- `torch_compile`: False
|
831 |
+
- `torch_compile_backend`: None
|
832 |
+
- `torch_compile_mode`: None
|
833 |
+
- `dispatch_batches`: None
|
834 |
+
- `split_batches`: None
|
835 |
+
- `include_tokens_per_second`: False
|
836 |
+
- `include_num_input_tokens_seen`: False
|
837 |
+
- `neftune_noise_alpha`: None
|
838 |
+
- `optim_target_modules`: None
|
839 |
+
- `batch_eval_metrics`: False
|
840 |
+
- `eval_on_start`: False
|
841 |
+
- `use_liger_kernel`: False
|
842 |
+
- `eval_use_gather_object`: False
|
843 |
+
- `average_tokens_across_devices`: False
|
844 |
+
- `prompts`: None
|
845 |
+
- `batch_sampler`: batch_sampler
|
846 |
+
- `multi_dataset_batch_sampler`: proportional
|
847 |
+
|
848 |
+
</details>
|
849 |
+
|
850 |
+
### Training Logs
|
851 |
+
| Epoch | Step | Training Loss | wmt da loss | mlqe en de loss | mlqe en zh loss | mlqe et en loss | mlqe ne en loss | mlqe ro en loss | mlqe si en loss | sts-eval_spearman_cosine | sts-test_spearman_cosine |
|
852 |
+
|:-----:|:-----:|:-------------:|:-----------:|:---------------:|:---------------:|:---------------:|:---------------:|:---------------:|:---------------:|:------------------------:|:------------------------:|
|
853 |
+
| 0.4 | 6690 | 7.8421 | 7.5547 | 7.5619 | 7.5555 | 7.5327 | 7.5354 | 7.5109 | 7.5564 | 0.1989 | - |
|
854 |
+
| 0.8 | 13380 | 7.552 | 7.5420 | 7.5757 | 7.5739 | 7.5185 | 7.5126 | 7.4994 | 7.5511 | 0.2336 | - |
|
855 |
+
| 1.2 | 20070 | 7.5216 | 7.5465 | 7.6072 | 7.5942 | 7.5217 | 7.5141 | 7.4871 | 7.5471 | 0.2694 | - |
|
856 |
+
| 1.6 | 26760 | 7.5024 | 7.5329 | 7.6123 | 7.5814 | 7.5230 | 7.5141 | 7.4679 | 7.5379 | 0.2866 | - |
|
857 |
+
| 2.0 | 33450 | 7.495 | 7.5252 | 7.6106 | 7.5756 | 7.5201 | 7.5128 | 7.4725 | 7.5417 | 0.2814 | 0.2807 |
|
858 |
+
|
859 |
+
|
860 |
+
### Framework Versions
|
861 |
+
- Python: 3.11.10
|
862 |
+
- Sentence Transformers: 3.3.1
|
863 |
+
- Transformers: 4.47.1
|
864 |
+
- PyTorch: 2.3.1+cu121
|
865 |
+
- Accelerate: 1.2.1
|
866 |
+
- Datasets: 3.2.0
|
867 |
+
- Tokenizers: 0.21.0
|
868 |
+
|
869 |
+
## Citation
|
870 |
+
|
871 |
+
### BibTeX
|
872 |
+
|
873 |
+
#### Sentence Transformers
|
874 |
+
```bibtex
|
875 |
+
@inproceedings{reimers-2019-sentence-bert,
|
876 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
877 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
878 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
879 |
+
month = "11",
|
880 |
+
year = "2019",
|
881 |
+
publisher = "Association for Computational Linguistics",
|
882 |
+
url = "https://arxiv.org/abs/1908.10084",
|
883 |
+
}
|
884 |
+
```
|
885 |
+
|
886 |
+
#### CoSENTLoss
|
887 |
+
```bibtex
|
888 |
+
@online{kexuefm-8847,
|
889 |
+
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
|
890 |
+
author={Su Jianlin},
|
891 |
+
year={2022},
|
892 |
+
month={Jan},
|
893 |
+
url={https://kexue.fm/archives/8847},
|
894 |
+
}
|
895 |
+
```
|
896 |
+
|
897 |
+
<!--
|
898 |
+
## Glossary
|
899 |
+
|
900 |
+
*Clearly define terms in order to be accessible across audiences.*
|
901 |
+
-->
|
902 |
+
|
903 |
+
<!--
|
904 |
+
## Model Card Authors
|
905 |
+
|
906 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
907 |
+
-->
|
908 |
+
|
909 |
+
<!--
|
910 |
+
## Model Card Contact
|
911 |
+
|
912 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
913 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "sentence-transformers/distiluse-base-multilingual-cased-v2",
|
3 |
+
"activation": "gelu",
|
4 |
+
"architectures": [
|
5 |
+
"DistilBertModel"
|
6 |
+
],
|
7 |
+
"attention_dropout": 0.1,
|
8 |
+
"dim": 768,
|
9 |
+
"dropout": 0.1,
|
10 |
+
"hidden_dim": 3072,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"max_position_embeddings": 512,
|
13 |
+
"model_type": "distilbert",
|
14 |
+
"n_heads": 12,
|
15 |
+
"n_layers": 6,
|
16 |
+
"output_hidden_states": true,
|
17 |
+
"output_past": true,
|
18 |
+
"pad_token_id": 0,
|
19 |
+
"qa_dropout": 0.1,
|
20 |
+
"seq_classif_dropout": 0.2,
|
21 |
+
"sinusoidal_pos_embds": false,
|
22 |
+
"tie_weights_": true,
|
23 |
+
"torch_dtype": "float32",
|
24 |
+
"transformers_version": "4.47.1",
|
25 |
+
"vocab_size": 119547
|
26 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.3.1",
|
4 |
+
"transformers": "4.47.1",
|
5 |
+
"pytorch": "2.3.1+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dbbc5f2d5511cb456059e2355c006214e670f7b2d9b3b879412e673e4aeab832
|
3 |
+
size 538947416
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Dense",
|
18 |
+
"type": "sentence_transformers.models.Dense"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 128,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": false,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": false,
|
48 |
+
"extra_special_tokens": {},
|
49 |
+
"full_tokenizer_file": null,
|
50 |
+
"mask_token": "[MASK]",
|
51 |
+
"max_len": 512,
|
52 |
+
"model_max_length": 128,
|
53 |
+
"never_split": null,
|
54 |
+
"pad_token": "[PAD]",
|
55 |
+
"sep_token": "[SEP]",
|
56 |
+
"strip_accents": null,
|
57 |
+
"tokenize_chinese_chars": true,
|
58 |
+
"tokenizer_class": "DistilBertTokenizer",
|
59 |
+
"unk_token": "[UNK]"
|
60 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|