metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- audiofolder
metrics:
- wer
model-index:
- name: whisper-small-Seneca
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: audiofolder
type: audiofolder
config: default
split: train
args: default
metrics:
- name: Wer
type: wer
value: 85.2054794520548
whisper-small-Seneca
This model is a fine-tuned version of openai/whisper-small on the audiofolder dataset. It achieves the following results on the evaluation set:
- Loss: 2.2327
- Wer: 85.2055
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 20
- training_steps: 500
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.009 | 12.01 | 100 | 2.0225 | 82.7397 |
0.0004 | 24.02 | 200 | 2.1612 | 86.0274 |
0.0002 | 37.01 | 300 | 2.2043 | 85.2055 |
0.0002 | 49.02 | 400 | 2.2259 | 85.4795 |
0.0002 | 62.01 | 500 | 2.2327 | 85.2055 |
Framework versions
- Transformers 4.25.1
- Pytorch 1.13.1+cu117
- Datasets 2.8.0
- Tokenizers 0.13.2