RichardErkhov's picture
uploaded readme
9e2ba7e verified

Quantization made by Richard Erkhov.

Github

Discord

Request more models

tinyllama-sft-vicuna-random-90k - AWQ

Original model description:

license: apache-2.0 base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T tags: - alignment-handbook - trl - sft - generated_from_trainer - trl - sft - generated_from_trainer datasets: - yihanwang617/vicuna_sub_random_90k model-index: - name: tinyllama-sft-vicuna-random-90k results: []

tinyllama-sft-vicuna-random-90k

This model is a fine-tuned version of TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T on the yihanwang617/vicuna_sub_random_90k dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7502

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 128
  • total_eval_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
0.7072 1.0 703 0.7502

Framework versions

  • Transformers 4.39.0.dev0
  • Pytorch 2.2.1+cu121
  • Datasets 2.14.6
  • Tokenizers 0.15.0