Quantization made by Richard Erkhov.
tinyllama-sft-vicuna-random-90k - AWQ
- Model creator: https://huggingface.co./yihanwang617/
- Original model: https://huggingface.co./yihanwang617/tinyllama-sft-vicuna-random-90k/
Original model description:
license: apache-2.0 base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T tags: - alignment-handbook - trl - sft - generated_from_trainer - trl - sft - generated_from_trainer datasets: - yihanwang617/vicuna_sub_random_90k model-index: - name: tinyllama-sft-vicuna-random-90k results: []
tinyllama-sft-vicuna-random-90k
This model is a fine-tuned version of TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T on the yihanwang617/vicuna_sub_random_90k dataset. It achieves the following results on the evaluation set:
- Loss: 0.7502
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 128
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.7072 | 1.0 | 703 | 0.7502 |
Framework versions
- Transformers 4.39.0.dev0
- Pytorch 2.2.1+cu121
- Datasets 2.14.6
- Tokenizers 0.15.0