YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co./docs/hub/model-cards#model-card-metadata)
Quantization made by Richard Erkhov.
r-3B-old - GGUF
- Model creator: https://huggingface.co./winstcha/
- Original model: https://huggingface.co./winstcha/r-3B-old/
Name | Quant method | Size |
---|---|---|
r-3B-old.Q2_K.gguf | Q2_K | 1.19GB |
r-3B-old.IQ3_XS.gguf | IQ3_XS | 1.3GB |
r-3B-old.IQ3_S.gguf | IQ3_S | 1.36GB |
r-3B-old.Q3_K_S.gguf | Q3_K_S | 1.35GB |
r-3B-old.IQ3_M.gguf | IQ3_M | 1.39GB |
r-3B-old.Q3_K.gguf | Q3_K | 1.48GB |
r-3B-old.Q3_K_M.gguf | Q3_K_M | 1.48GB |
r-3B-old.Q3_K_L.gguf | Q3_K_L | 1.59GB |
r-3B-old.IQ4_XS.gguf | IQ4_XS | 1.63GB |
r-3B-old.Q4_0.gguf | Q4_0 | 1.7GB |
r-3B-old.IQ4_NL.gguf | IQ4_NL | 1.71GB |
r-3B-old.Q4_K_S.gguf | Q4_K_S | 1.71GB |
r-3B-old.Q4_K.gguf | Q4_K | 1.8GB |
r-3B-old.Q4_K_M.gguf | Q4_K_M | 1.8GB |
r-3B-old.Q4_1.gguf | Q4_1 | 1.86GB |
r-3B-old.Q5_0.gguf | Q5_0 | 2.02GB |
r-3B-old.Q5_K_S.gguf | Q5_K_S | 2.02GB |
r-3B-old.Q5_K.gguf | Q5_K | 2.07GB |
r-3B-old.Q5_K_M.gguf | Q5_K_M | 2.07GB |
r-3B-old.Q5_1.gguf | Q5_1 | 2.18GB |
r-3B-old.Q6_K.gguf | Q6_K | 2.36GB |
r-3B-old.Q8_0.gguf | Q8_0 | 3.06GB |
Original model description:
tags: - autotrain - text-generation-inference - text-generation - peft library_name: transformers base_model: Qwen/Qwen2.5-3B-Instruct widget: - messages: - role: user content: What is your favorite condiment? license: other
Model Trained Using AutoTrain
This model was trained using AutoTrain. For more information, please visit AutoTrain.
Usage
from transformers import AutoModelForCausalLM, AutoTokenizer
model_path = "PATH_TO_THIS_REPO"
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(
model_path,
device_map="auto",
torch_dtype='auto'
).eval()
# Prompt content: "hi"
messages = [
{"role": "user", "content": "hi"}
]
input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt')
output_ids = model.generate(input_ids.to('cuda'))
response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True)
# Model response: "Hello! How can I assist you today?"
print(response)
- Downloads last month
- 0
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no library tag.