uploaded readme
Browse files
README.md
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Quantization made by Richard Erkhov.
|
2 |
+
|
3 |
+
[Github](https://github.com/RichardErkhov)
|
4 |
+
|
5 |
+
[Discord](https://discord.gg/pvy7H8DZMG)
|
6 |
+
|
7 |
+
[Request more models](https://github.com/RichardErkhov/quant_request)
|
8 |
+
|
9 |
+
|
10 |
+
opt-350m-multiprompt - AWQ
|
11 |
+
- Model creator: https://huggingface.co/pszemraj/
|
12 |
+
- Original model: https://huggingface.co/pszemraj/opt-350m-multiprompt/
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
|
17 |
+
Original model description:
|
18 |
+
---
|
19 |
+
license: other
|
20 |
+
tags:
|
21 |
+
- generated_from_trainer
|
22 |
+
- text generation
|
23 |
+
- stable diffusion
|
24 |
+
- midjourney
|
25 |
+
- text2image
|
26 |
+
- text to image
|
27 |
+
- prompt augment
|
28 |
+
- prompt engineering
|
29 |
+
thumbnail: https://i.imgur.com/DeKNHtC.jpg
|
30 |
+
datasets:
|
31 |
+
- pszemraj/text2image-multi-prompt
|
32 |
+
widget:
|
33 |
+
- text: "morning sun over Jakarta"
|
34 |
+
example_title: "morning sun"
|
35 |
+
- text: "WARNING: pip is"
|
36 |
+
example_title: "pip"
|
37 |
+
- text: "sentient cheese"
|
38 |
+
example_title: "sentient cheese"
|
39 |
+
- text: "cheeps are"
|
40 |
+
example_title: "cheeps"
|
41 |
+
- text: "avocado armchair"
|
42 |
+
example_title: "creative prompt"
|
43 |
+
- text: "Landscape of"
|
44 |
+
example_title: "landscape"
|
45 |
+
parameters:
|
46 |
+
min_length: 16
|
47 |
+
max_length: 96
|
48 |
+
no_repeat_ngram_size: 1
|
49 |
+
do_sample: True
|
50 |
+
---
|
51 |
+
|
52 |
+
|
53 |
+
# pszemraj/opt-350m-multiprompt
|
54 |
+
|
55 |
+
<a href="https://colab.research.google.com/gist/pszemraj/bdd1238ee4b8330aeec6774a16f9a677/opt-350m-multiprompt-demo.ipynb">
|
56 |
+
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
|
57 |
+
</a>
|
58 |
+
|
59 |
+
Generate/augment your prompt with a model trained on a large & diverse prompt dataset.
|
60 |
+
|
61 |
+
This model is a fine-tuned version of [facebook/opt-350m](https://huggingface.co/facebook/opt-350m) on the pszemraj/text2image-prompts-multi dataset.
|
62 |
+
It achieves the following results on the evaluation set:
|
63 |
+
- Loss: 1.6669
|
64 |
+
- eval steps per second: 16.21
|
65 |
+
- perplexity: 5.29
|
66 |
+
|
67 |
+
## Example
|
68 |
+
|
69 |
+
|
70 |
+
![landscape of florida](https://i.imgur.com/DeKNHtC.jpg)
|
71 |
+
|
72 |
+
<br>
|
73 |
+
|
74 |
+
_The above example was created with [DALL-E 2](https://labs.openai.com/sc/YbiY2kkuQeODzHNwUHn4D5RN) but will of course work with any text2image model._
|
75 |
+
|
76 |
+
## Intended uses & limitations
|
77 |
+
|
78 |
+
- The model will generate augmentations that are biased towards the training data, i.e. what people already asked for in the SD/midjourney discords, etc. Creating a larger dataset was an attempt at mitigating this through more data from different datasets.
|
79 |
+
|
80 |
+
## Training and evaluation data
|
81 |
+
|
82 |
+
See the `pszemraj/text2image-prompts-multi` dataset card for details. The dataset is a compilation of several text-to-image prompt datasets on huggingface :)
|
83 |
+
|
84 |
+
## Training procedure
|
85 |
+
|
86 |
+
### Training hyperparameters
|
87 |
+
|
88 |
+
The following hyperparameters were used during training:
|
89 |
+
- learning_rate: 0.0002
|
90 |
+
- train_batch_size: 8
|
91 |
+
- eval_batch_size: 4
|
92 |
+
- seed: 42
|
93 |
+
- distributed_type: multi-GPU
|
94 |
+
- num_devices: 2
|
95 |
+
- gradient_accumulation_steps: 16
|
96 |
+
- total_train_batch_size: 256
|
97 |
+
- total_eval_batch_size: 8
|
98 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
99 |
+
- lr_scheduler_type: cosine
|
100 |
+
- lr_scheduler_warmup_ratio: 0.04
|
101 |
+
- num_epochs: 4.0
|
102 |
+
|
103 |
+
### Training results
|
104 |
+
|
105 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
106 |
+
|:-------------:|:-----:|:----:|:---------------:|
|
107 |
+
| 2.1677 | 1.0 | 990 | 2.0888 |
|
108 |
+
| 1.856 | 2.0 | 1980 | 1.8215 |
|
109 |
+
| 1.6864 | 3.0 | 2970 | 1.6935 |
|
110 |
+
| 1.6228 | 4.0 | 3960 | 1.6670 |
|
111 |
+
|
112 |
+
|
113 |
+
### Framework versions
|
114 |
+
|
115 |
+
- Transformers 4.25.0.dev0
|
116 |
+
- Pytorch 1.13.0+cu117
|
117 |
+
- Datasets 2.6.1
|
118 |
+
- Tokenizers 0.13.1
|
119 |
+
|
120 |
+
|