RichardErkhov commited on
Commit
fdb6544
·
verified ·
1 Parent(s): e57aa70

uploaded readme

Browse files
Files changed (1) hide show
  1. README.md +120 -0
README.md ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Quantization made by Richard Erkhov.
2
+
3
+ [Github](https://github.com/RichardErkhov)
4
+
5
+ [Discord](https://discord.gg/pvy7H8DZMG)
6
+
7
+ [Request more models](https://github.com/RichardErkhov/quant_request)
8
+
9
+
10
+ opt-350m-multiprompt - AWQ
11
+ - Model creator: https://huggingface.co/pszemraj/
12
+ - Original model: https://huggingface.co/pszemraj/opt-350m-multiprompt/
13
+
14
+
15
+
16
+
17
+ Original model description:
18
+ ---
19
+ license: other
20
+ tags:
21
+ - generated_from_trainer
22
+ - text generation
23
+ - stable diffusion
24
+ - midjourney
25
+ - text2image
26
+ - text to image
27
+ - prompt augment
28
+ - prompt engineering
29
+ thumbnail: https://i.imgur.com/DeKNHtC.jpg
30
+ datasets:
31
+ - pszemraj/text2image-multi-prompt
32
+ widget:
33
+ - text: "morning sun over Jakarta"
34
+ example_title: "morning sun"
35
+ - text: "WARNING: pip is"
36
+ example_title: "pip"
37
+ - text: "sentient cheese"
38
+ example_title: "sentient cheese"
39
+ - text: "cheeps are"
40
+ example_title: "cheeps"
41
+ - text: "avocado armchair"
42
+ example_title: "creative prompt"
43
+ - text: "Landscape of"
44
+ example_title: "landscape"
45
+ parameters:
46
+ min_length: 16
47
+ max_length: 96
48
+ no_repeat_ngram_size: 1
49
+ do_sample: True
50
+ ---
51
+
52
+
53
+ # pszemraj/opt-350m-multiprompt
54
+
55
+ <a href="https://colab.research.google.com/gist/pszemraj/bdd1238ee4b8330aeec6774a16f9a677/opt-350m-multiprompt-demo.ipynb">
56
+ <img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
57
+ </a>
58
+
59
+ Generate/augment your prompt with a model trained on a large & diverse prompt dataset.
60
+
61
+ This model is a fine-tuned version of [facebook/opt-350m](https://huggingface.co/facebook/opt-350m) on the pszemraj/text2image-prompts-multi dataset.
62
+ It achieves the following results on the evaluation set:
63
+ - Loss: 1.6669
64
+ - eval steps per second: 16.21
65
+ - perplexity: 5.29
66
+
67
+ ## Example
68
+
69
+
70
+ ![landscape of florida](https://i.imgur.com/DeKNHtC.jpg)
71
+
72
+ <br>
73
+
74
+ _The above example was created with [DALL-E 2](https://labs.openai.com/sc/YbiY2kkuQeODzHNwUHn4D5RN) but will of course work with any text2image model._
75
+
76
+ ## Intended uses & limitations
77
+
78
+ - The model will generate augmentations that are biased towards the training data, i.e. what people already asked for in the SD/midjourney discords, etc. Creating a larger dataset was an attempt at mitigating this through more data from different datasets.
79
+
80
+ ## Training and evaluation data
81
+
82
+ See the `pszemraj/text2image-prompts-multi` dataset card for details. The dataset is a compilation of several text-to-image prompt datasets on huggingface :)
83
+
84
+ ## Training procedure
85
+
86
+ ### Training hyperparameters
87
+
88
+ The following hyperparameters were used during training:
89
+ - learning_rate: 0.0002
90
+ - train_batch_size: 8
91
+ - eval_batch_size: 4
92
+ - seed: 42
93
+ - distributed_type: multi-GPU
94
+ - num_devices: 2
95
+ - gradient_accumulation_steps: 16
96
+ - total_train_batch_size: 256
97
+ - total_eval_batch_size: 8
98
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
99
+ - lr_scheduler_type: cosine
100
+ - lr_scheduler_warmup_ratio: 0.04
101
+ - num_epochs: 4.0
102
+
103
+ ### Training results
104
+
105
+ | Training Loss | Epoch | Step | Validation Loss |
106
+ |:-------------:|:-----:|:----:|:---------------:|
107
+ | 2.1677 | 1.0 | 990 | 2.0888 |
108
+ | 1.856 | 2.0 | 1980 | 1.8215 |
109
+ | 1.6864 | 3.0 | 2970 | 1.6935 |
110
+ | 1.6228 | 4.0 | 3960 | 1.6670 |
111
+
112
+
113
+ ### Framework versions
114
+
115
+ - Transformers 4.25.0.dev0
116
+ - Pytorch 1.13.0+cu117
117
+ - Datasets 2.6.1
118
+ - Tokenizers 0.13.1
119
+
120
+