YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co./docs/hub/model-cards#model-card-metadata)
Quantization made by Richard Erkhov.
opt-350m-multiprompt - AWQ
- Model creator: https://huggingface.co./pszemraj/
- Original model: https://huggingface.co./pszemraj/opt-350m-multiprompt/
Original model description:
license: other tags: - generated_from_trainer - text generation - stable diffusion - midjourney - text2image - text to image - prompt augment - prompt engineering thumbnail: https://i.imgur.com/DeKNHtC.jpg datasets: - pszemraj/text2image-multi-prompt widget: - text: "morning sun over Jakarta" example_title: "morning sun" - text: "WARNING: pip is" example_title: "pip" - text: "sentient cheese" example_title: "sentient cheese" - text: "cheeps are" example_title: "cheeps" - text: "avocado armchair" example_title: "creative prompt" - text: "Landscape of" example_title: "landscape" parameters: min_length: 16 max_length: 96 no_repeat_ngram_size: 1 do_sample: True
pszemraj/opt-350m-multiprompt
Generate/augment your prompt with a model trained on a large & diverse prompt dataset.
This model is a fine-tuned version of facebook/opt-350m on the pszemraj/text2image-prompts-multi dataset. It achieves the following results on the evaluation set:
- Loss: 1.6669
- eval steps per second: 16.21
- perplexity: 5.29
Example
The above example was created with DALL-E 2 but will of course work with any text2image model.
Intended uses & limitations
- The model will generate augmentations that are biased towards the training data, i.e. what people already asked for in the SD/midjourney discords, etc. Creating a larger dataset was an attempt at mitigating this through more data from different datasets.
Training and evaluation data
See the pszemraj/text2image-prompts-multi
dataset card for details. The dataset is a compilation of several text-to-image prompt datasets on huggingface :)
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 16
- total_train_batch_size: 256
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.04
- num_epochs: 4.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.1677 | 1.0 | 990 | 2.0888 |
1.856 | 2.0 | 1980 | 1.8215 |
1.6864 | 3.0 | 2970 | 1.6935 |
1.6228 | 4.0 | 3960 | 1.6670 |
Framework versions
- Transformers 4.25.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.6.1
- Tokenizers 0.13.1
- Downloads last month
- 1